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Preface to the Second Edition

Homological Algebra has grown in the nearly three decades since the first edi-
tion of this book appeared in 1979. Two books discussing more recent results
are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand—
Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand
and Manin divide the history of Homological Algebra into three periods: the
first period ended in the early 1960s, culminating in applications of Homo-
logical Algebra to regular local rings. The second period, greatly influenced
by the work of A. Grothendieck and J.-P. Serre, continued through the 1980s;
it involves abelian categories and sheaf cohomology. The third period, in-
volving derived categories and triangulated categories, is still ongoing. Both
of these newer books discuss all three periods (see also Kashiwara—Schapira,
Categories and Sheaves). The original version of this book discussed the first
period only; this new edition remains at the same introductory level, but it
now introduces the second period as well. This change makes sense peda-
gogically, for there has been a change in the mathematics population since
1979; today, virtually all mathematics graduate students have learned some-
thing about functors and categories, and so I can now take the categorical
viewpoint more seriously.

When I was a graduate student, Homological Algebra was an unpopular
subject. The general attitude was that it was a grotesque formalism, boring
to learn, and not very useful once one had learned it. Perhaps an algebraic
topologist was forced to know this stuff, but surely no one else should waste
time on it. The few true believers were viewed as workers at the fringe of
mathematics who kept tinkering with their elaborate machine, smoothing out
rough patches here and there.
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This attitude changed dramatically when J.-P. Serre characterized regular
local rings using Homological Algebra (they are the commutative noetherian
local rings of “finite global dimension”), for this enabled him to prove that
any localization of a regular local ring is itself regular (until then, only spe-
cial cases of this were known). At the same time, M. Auslander and D. A.
Buchsbaum also characterized regular local rings, and they went on to com-
plete work of M. Nagata by using global dimension to prove that every regular
local ring is a unique factorization domain. As Grothendieck and Serre revolu-
tionized Algebraic Geometry by introducing schemes and sheaves, resistance
to Homological Algebra waned. Today, it is just another standard tool in a
mathematician’s kit. For more details, we recommend C. A. Weibel’s chapter,
“History of Homological Algebra,” in the book of James, History of Topology.

Homological Algebra presents a great pedagogical challenge for authors
and for readers. At first glance, its flood of elementary definitions (which
often originate in other disciplines) and its space-filling diagrams appear for-
bidding. To counter this first impression, S. Lang set the following exercise
on page 105 of his book, Algebra:

Take any book on homological algebra and prove all the theorems
without looking at the proofs given in that book.

Taken literally, the statement of the exercise is absurd. But its spirit is ab-
solutely accurate; the subject only appears difficult. However, having rec-
ognized the elementary character of much of the early material, one is often
tempted to “wave one’s hands”: to pretend that minutiae always behave well.
It should come as no surprise that danger lurks in this attitude. For this rea-
son, [ include many details in the beginning, at the risk of boring some readers
by so doing (of course, such readers are free to turn the page). My intent is
twofold: to allow readers to see that complete proofs can, in fact, be written
compactly; to give readers the confidence to believe that they, too, can write
such proofs when, later, the lazy author asks them to. However, we must cau-
tion the reader; some “obvious” statements are not only false, they may not
even make sense. For example, if R is aring and A and B are left R-modules,
then Hompg (A, B) may not be an R-module at all; and, if it is a module, it is
sometimes a left module and sometimes a right module. Is an alleged function
with domain a tensor product well-defined? Is an isomorphism really natural?
Does a diagram really commute? After reading the first three chapters, the
reader should be able to deal with such matters efficiently.

This book is my attempt to make Homological Algebra lovable, and I
believe that this requires the subject be presented in the context of other math-
ematics. For example, Chapters 2, 3, and 4 form a short course in module the-
ory, investigating the relation between a ring and its projective, injective, and
flat modules. Making the subject lovable is my reason for delaying the formal
introduction of homology functors until Chapter 6 (although simplicial and
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singular homology do appear in Chapter 1). Many readers wanting to learn
Homological Algebra are familiar with the first properties of Hom and tensor;
even so, they should glance at the first chapters, for there may be some unfa-
miliar items therein. Some category theory appears throughout, but it makes a
more brazen appearance in Chapter 5, where we discuss limits, adjoint func-
tors, and sheaves. Although presheaves are introduced in Chapter 1, we do not
introduce sheaves until we can observe that they usually form an abelian cat-
egory. Chapter 6 constructs homology functors, giving the usual fundamental
results about long exact sequences, natural connecting homomorphisms, and
independence of choices of projective, injective, and flat resolutions used to
construct them. Applications of sheaves are most dramatic in the context of
Several Complex Variables and in Algebraic Geometry; alas, I say only a few
words pointing the reader to appropriate texts, but there is a brief discussion
of the Riemann—Roch Theorem over compact Riemann surfaces. Chapters 7,
8, and 9 consider the derived functors of Hom and tensor, with applications to
ring theory (via global dimension), cohomology of groups, and division rings.

Learning Homological Algebra is a two-stage affair. First, one must learn
the language of Ext and Tor and what it describes. Second, one must be
able to compute these things and, often, this involves yet another language,
that of spectral sequences. Chapter 10 develops spectral sequences via exact
couples, always taking care that bicomplexes and their multiple indices are
visible because almost all applications occur in this milieu.

A word about notation. I am usually against spelling reform; if everyone
is comfortable with a symbol or an abbreviation, who am I to say otherwise?
However, I do use a new symbol to denote the integers mod m because, nowa-
days, two different symbols are used: Z/mZ and Z,,. My quarrel with the
first symbol is that it is too complicated to write many times in an argument;
my quarrel with the simpler second symbol is that it is ambiguous: when p is
a prime, the symbol Z, often denotes the p-adic integers and not the integers
mod p. Since capital I reminds us of integers and since blackboard font is in
common use, as in Z, Q, R, C, and F,, I denote the integers mod m by I,,,.

It is a pleasure to thank again those who helped with the first edition.
I also thank the mathematicians who helped with this revision: Matthew
Ando, Michael Barr, Steven Bradlow, Kenneth S. Brown, Daniel Grayson,
Phillip Griffith, William Haboush, Aimo Hinkkanen, Ilya Kapovich, Randy
McCarthy, Igor Mineyev, Thomas A. Nevins, Keith Ramsay, Derek Robin-
son, and Lou van den Dries. I give special thanks to Mirroslav Yotov who
not only made many valuable suggestions improving the entire text but who,
having seen my original flawed subsection on the Riemann—Roch Theorem,
patiently guided my rewriting of it.

Joseph J. Rotman
May 2008
Urbana IL



How to Read This Book

Some exercises are starred; this means that they will be cited somewhere
in the book, perhaps in a proof.

One may read this book by starting on page 1, then continuing, page by
page, to the end, but a mathematics book cannot be read as one reads a novel.
Certainly, this book is not a novel! A reader knowing very little homology (or
none at all) should begin on page 1 and then read only the portion of Chapter 1
that is unfamiliar. Homological Algebra developed from Algebraic Topology,
and it is best understood if one knows its origins, which are described in Sec-
tions 1.1 and 1.3. Section 1.2 introduces categories and functors; at the outset,
the reader may view this material as a convenient language, but it is very im-
portant for the rest of the text.

After Chapter 1, one could go directly to Chapter 6, Homology, but I don’t
advise it. It is not necessary to digest all the definitions and constructions in
the first five chapters before studying homology, but one should read enough
to become familiar with the point of view being developed, returning to read
or reread items in earlier chapters when necessary.

I believe that it is wisest to learn homology in a familiar context in which it
can be applied. To illustrate, one of the basic constructs in defining homology
is that of a complex: a sequence of homomorphisms

dpt 1 d
—> Cn+l L) Cn —n> Cn—l —>

in which d,d,+1 = 0 for all n € Z. There is no problem digesting such
a simple definition, but one might wonder where it comes from and why it
is significant. The reader who has seen some Algebraic Topology (as in our
Chapter 1) recognizes a geometric reason for considering complexes. But this

xiii
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observation only motivates the singular complex of a topological space. A
more perspicacious reason arises in Algebra. Every R-module M is a quo-
tient of a free module; thus, M = F /K, where F is free and K C F is the
submodule of relations; thatis, 0 - K — F — M — 0Oisexact. If X
is a basis of F, then (X | K) is called a presentation of G. Theoretically,
(X | K) is a complete description of M (to isomorphism) but, in practice, it is
difficult to extract information about M from a presentation of it. However, if
R is a principal ideal domain, then every submodule of a free module is free,
and so K has a basis, say, Y [we also say that (X | Y) is a presentation]. For
example, the canonical forms for matrices over a field k arise from presenta-
tions of certain k[x]-modules. For a general ring R, we can iterate the idea
of presentations. If M = F/K, where F is free, then K = F/K; for some
free module F (thus, K| can be thought of as relations among the relations;
Hilbert called them syzygies). Now 0 — K; — F; — K — 0 is exact;
splicing it to the earlier exact sequence gives exactness of

O—>K1—>F1—d>F—>M—>O

(where d: Fy — F is the composite i — K C F), forimd = K =
ker(F — M). Repeat: K| = F,/K; for some free F;, and continuing the
construction above gives an infinitely long exact sequence of free modules
and homomorphisms, called a resolution of M, which serves as a generalized
presentation. A standard theme of Homological Algebra is to replace a mod-
ule by a resolution of it. Resolutions are exact sequences, and exact sequences
are complexes (if imd,+; = kerd,, then d,d,+1 = 0). Why do we need the
extra generality present in the definition of complex? One answer can be seen
by returning to Algebraic Topology. We are interested not only in the ho-
mology groups of a space, but also in its cohomology groups, and these arise
by applying contravariant Hom functors to the singular complex. In Algebra,
the problem of classifying group extensions also leads to applying Hom func-
tors to resolutions. Even though resolutions are exact sequences, they become
mere complexes after applying Hom. Homological Algebra is a tool that ex-
tracts information from such sequences. As the reader now sees, the context
is interesting, and it puts flesh on abstract definitions.



Introduction

1.1 Simplicial Homology

Homological Algebra is an outgrowth of Algebraic Topology, and so we begin
with a historical discussion of the origins of homology in topology. Let X be
an open set in the plane, and fix points ¢ and b in X. Given a path! 8 in X

Fig. 1.1 Two paths.

from a to b, and given a pair P(x, y) and Q(x, y) of real-valued, continuously
differentiable functions on X, one wants to evaluate the line integral

/de+Qdy.
B

ILet I = [0, 1] be the closed unit interval. A path B in X from a to b is a continuous
function B: I — X with 8(0) = a and B(1) = b; thus, a path is a parametrized curve. A
path B is closed at a if $(0) = a = B(1) or, what is the same thing, if S is a continuous
map of the unit circle § Uinto X with f:(1,0) = a.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 1
DOI 10.1007/978-0-387-68324-9_1, (© Springer Science+Business Media LLC 2009



2 INTRODUCTION CH. 1

It is wise to regard B as a finite union of paths, for § may be only piece-
wise smooth; for example, it may be a polygonal path. For the rest of this
discussion, we ignore (necessary) differentiability hypotheses.

A fundamental question asks when the line integral is independent of the
path B: is fﬂ’ Pdx+ Qdy = fﬂ P dx + Qdy if B’ is another path in X from
a to b? If y is the closed path y = B — B’ [that is, y goes from a to b via S8,
and then goes back via —B’ from b to a, where —8/(¢r) = B’(1 — 1)], then the
integral is independent of the paths g and g’ if and only if | Y Pdx+Qdy =
0. Suppose there are “bad” points z1, ..., z, deleted from X (for example, if
P or Q has a singularity at some z;). The line integral along y is affected by

Fig. 1.2 Green’s theorem.

whether any of these bad points lies inside y. In Fig. 1.2, each path y; is a
simple closed path in X (that is, y; is a homeomorphism from the unit circle
S! to im Vi © R?) containing z; inside, while all the other z; are outside
yi. If y is oriented counterclockwise and each y; is oriented clockwise, then

Green’s Theorem states that
0 oP
Pdx + Qdy =// 90 _ap dxdy,
, R \ 0x ay

/de—l—Qdy—i—Z(/
14 i=1 Vi

1

where R is the shaded two-dimensional region in Fig. 1.2. One is tempted to
write Zl-"zl(fyi P dx + Q dy) more concisely, as fZ- ,; P dx+ Qdy. More-
over, instead of mentioning orientations explicitly, we may write sums and
differences of paths, where a negative coefficient reverses direction. For sim-
ple paths, the notions of “inside” and “outside” make sense.”> A path may
wind around some z; several times along y;, and so it makes sense to write
formal Z-linear combinations of paths; that is, we may allow integer coeffi-
cients other than 1. Recall that if Y is any set, then the free abelian group

2The Jordan curve theorem says that if y is a simple closed path in the plane R2,
then the complement R2 — imy has exactly two components, one of which is bounded.
The bounded component is called the inside of y, and the other (necessarily unbounded)
component is called the outside.
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with basis Y is an abelian group G[Y] in which each element g € G[Y] has
a unique expression of the form g = Zer myy, where m, € Z and only
finitely many m, # 0 (see Proposition 2.33). In particular, Green’s Theorem
involves the free abelian group G[Y] with basis Y being the (huge) set of all
paths o: I — X. Intuitively, elements of G[Y] are unions of finitely many
(not necessarily closed) paths o in X.

Consider those ordered pairs (P, Q) of functions X — R satisfying
dQ/dx = dP/dy. The double integral in Green’s Theorem vanishes for such
function pairs: fmy Y iy Pdx + Qdy = 0. An equivalence relation on
G[Y] suggests itself. If 8 = Y "m;o; and B’ = Y _mio; € G[Y], call B and
B’ equivalent if, for all (P, Q) with 9Q/dx = dP/dy, the values of their line
integrals agree:

/de—i—Qdy:/ Pdx + Qdy.
B B

The equivalence class of g is called its homology class, from the Latin word
homologia meaning agreement. If B — B’ = > myo, where Umﬂﬁo imo is
the boundary of a two-dimensional region in X, then |, s—p P dx+Qdy =0;
that is, fﬂ Pda+Qdy = fﬂ/ P da+Q dy. In short, integration is independent
of paths lying in the same homology class.

Homology can be defined without using integration of function pairs.
Poincaré recognized that whether a topological space X has different kinds of
holes is a kind of connectivity. To illustrate, suppose that X is a finite simpli-
cial complex; that is, X can be “triangulated” into finitely many n-simplexes
for n > 0, where O-simplexes are points, say, vy, ..., vy, 1-simplexes are
certain edges [v;, v;] (with endpoints v; and v;), 2-simplexes are certain tri-
angles [v;, v, vg] (with vertices v;, v}, vg), 3-simplexes are certain tetrahe-
dra [v;, v}, vk, ve], and there are higher-dimensional analogs [vjy, ..., v;,]
for larger n. The question to ask is whether a union of n-simplexes in X
that “ought” to be the boundary of some (n 4 1)-simplex actually is such a
boundary. For example, when n = 0, two points @ and b in X ought to be
the boundary (endpoints) of a path in X; if, for each pair of points a, b € X,
there is a path in X from a to b, then X is called path connected; if there
is no such path, then X has a 0-dimensional hole. For an example of a one-
dimensional hole, let X be the punctured plane; that is, X is the plane with
the origin deleted. The perimeter of a triangle A ought to be the boundary of
a 2-simplex, but it is not if A contains the origin in its interior; thus, X has a
one-dimensional hole. If the interior of X were missing a line segment con-
taining the origin, or even a small disk containing the origin, this hole would
still be one-dimensional; we are not considering the size of the hole, but the
size of the possible boundary. We must keep our eye on the doughnut and not
upon the hole!
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The triangle [a, b, c] in Fig. 1.3 has vertices a, b, ¢ and edges [b, c], [a, c],
[a, b]; its boundary d[a, b, c] should be [b, c] U [c, a] U [a, c]. But edges are
oriented; think of [a, c] as a path from a to ¢ and [c,a] = —[a, c] as the
reverse path from ¢ to a. Thus, the boundary is

dla, b, c] =1[b,c]U —|a, c]U la, b].

Assume now that paths can be added and subtracted; that is, view paths as
lying in the free abelian group C1(X) with basis all 1-simplexes. Then

dla, b, c] =[b, c] — la, c] + [a, b].

Similarly, define the boundary of [a, b] to be d[a, b] = b — a € Cy(X), the
free abelian group with basis all O-simplexes, and define the boundary of a
point to be 0. Note that

d0(dla, b, c]) = o([b, c] — [a, c] + [a, b])
=(c—-b)—(c—a)+ b —a)=0.

N

c

a

d

Fig. 1.3. The rectangle [.

The rectangle [J with vertices a, b, ¢, d is the union of two triangles,
namely, [a, b, c] U [a, ¢, d]; let us check its boundary. If we assume that 9
is a homomorphism, then

o) = dla, b, c]Udla,c,d]
= 0d[a, b, c] + dla, c, d]
= ([b, c] — la, c] + [a, b]) + ([c, d] — [a,d] + [a, c])
= [a, bl + [b, c] + [c,d] — [a, d]
= [a,b] +[b,c] + [c,d] + [d, a].

Note that the diagonal [a, c] occurred twice, with different signs, and so it
canceled, as it should. We have seen that the formalism suggests the use of
signs to describe boundaries as certain alternating sums of edges or points.
Such ideas lead to the following construction. For each n > 0, consider all
formal linear combinations of n-simplexes; that is, form the free abelian group
C,(X) with basis all n-simplexes [v;,, . .., v;, ], and call such linear combina-
tions simplicial n-chains; define C_1(X) = {0}. Some n-chains ought to be
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boundaries of some union of (n + 1)-simplexes; call them simplicial n-cycles.
For example, adding the three edges of a triangle (with appropriate choice of
signs) is a 1-cycle, as is the sum of the four outer edges of a rectangle. Certain
simplicial n-chains actually are boundaries, and these are called simplicial n-
boundaries. For example, if A is a triangle in the punctured plane X, then the
alternating sum of the edges of A is a 1-cycle; this 1-cycle is a 1-boundary if
and only if the origin does not lie in the interior of A. Here are the precise
definitions.

Definition. Let X be a finite simplicial complex. If n > 1, define
Op: Cp(X) = Cy—1(X)

by

n

an[v()a . "av}’l] = Z(_l)l[v07 .. 'a’v\ia MR Un]

i=0

(the notation v; means that v; is omitted). Define 3y: Cop(X) — C_1(X) to
be identically zero [since C_1(X) = {0}, this definition is forced on us]. As
every simplicial n-chain has a unique expression as a linear combination of
simplicial n-simplexes, 9, extends by linearity’ to a function defined on all of
C,,(X). The homomorphisms 9, are called simplicial boundary maps.

The presence of signs gives the following fundamental result.

Proposition 1.1. Foralln > 0,
Op—10, = 0.

Proof.  Each term of d,[xo, ..., x,] has the form (=D [x0s ..., Xiy ..oy Xnl.
Hence, 9,[x0, ..., x,] = > ;(=D'[x0, ..., X, ..., x,], and
an—l[x()’"'v/x\is"-vxn] = [}\07"'9/)?1'1"'7)(:”]_'_”'
+ (=D xo, R B )
+ (_l)l[-x()a 7}\1’3‘:\!—%1 ---7xn] +

+(_l)n_l[x()v"'ijc\iv"'sjc\n]

3Proposition 2.34 says that if F is a free abelian group with basis ¥, and if f: ¥ — G
is any function with values in an abelian group G, then there exists a unique homomor-
phism f: F — G with f(y) = f(y) forall y € Y. The map f is obtained from f by
extending by linearity: ifu = myy|+---+mpyp, then f(u) =my f(yp+---+mp f(yp).



6 INTRODUCTION CH. 1

(when k > i + 1, the sign of [xg...., i, ..., Xk, ..., X,]is (=K~ for the
vertex xy is the (k — 1)st term in the list xg, ..., X;, ..., Xk, . . ., Xp). Thus,

i—1
On1[x0s o KXl = (=D [0y Ry LR X
Jj=0

n
+ Z (=D Uxos . Ziy e s Ty e Xl

k=i+1
Now [x0, ..., Xj, ..., X}, ..., X,] occurs twice in 8,_19,[x0, ..., x,]: from
On—1lx0, ..., X, ..., x,] and from d,_1[x, ..., X}, ..., x,]. Therefore, the

first term has sign (—1)*/, while the second term has sign (—1)"*/~!. Thus,
the (n — 2)-tuples cancel in pairs, and d,—19, = 0. e

Definition. For each n > 0, the subgroup kerd, < C,(X) is denoted by
Z,(X); its elements are called simplicial n-cycles. The subgroup im d,,+1 C
C, (X) is denoted by B, (X); its elements are called simplicial n-boundaries.

Corollary 1.2. Forall n,
B, (X) € Z,(X).

Proof. If « € B, then « = 0,11(B) for some (n + 1)-chain 8. Hence,
Op(a) = 0,0,41(B) =0,sothatw € kerd, = Z,,. e

We have defined a sequence of abelian groups and homomorphisms in

which composites of consecutive arrows are 0:

o CyX) B X)) B 1 x) s cox) 2 0.

The interesting group is the quotient group Z, (X)/B, (X).

Definition. The nth simplicial homology group of a finite simplicial com-
plex X is
Hy(X) = Z,(X)/By(X).

What survives in the quotient group Z, (X)/B, (X) are the n-dimensional
holes; that is, those n-cycles that are not n-boundaries; H,(X) = {0} means
that X has no n-dimensional holes.* For example, if X is the punctured plane,

4Eventually, homology groups will be defined for mathematical objects other than topo-
logical spaces. It is always a good idea to translate H, (X) = {0} into concrete terms, if
possible, as some interesting property of X. One can then interpret the elements of H, (X)
as being obstructions to whether X enjoys this property.
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then Hy(X) # {0}: if A = [a, b, c] is a triangle in X having the origin in its
interior, then « = [b, c] — [a, c] + [a, b] is a 1-cycle that is not a boundary,5
and the coset o + B (X) is a nonzero element of Hj(X). Topologists modify
this construction in two ways. They introduce homology with coefficients in
an abelian group G by tensoring the sequence of chain groups by G and then
taking homology groups; they also consider cohomology with coefficients in
G by applying Hom([J, G) to the sequence of chain groups and then taking
homology groups. Homological Algebra arose in trying to compute and to
find relations between homology groups and cohomology groups of spaces.

1.2 Categories and Functors

Let us now pass from the concrete to the abstract. Categories are the context
for discussing general properties of systems such as groups, rings, modules,
sets, or topological spaces, in tandem with their respective transformations:
homomorphisms, functions, or continuous maps.

There are well-known set-theoretic “paradoxes” showing that contradic-
tions arise if we are not careful about how the undefined terms set and element
are used. For example, Russell’s paradox gives a contradiction arising from
regarding every collection as a set. Define a Russell set to be a set S that is
not a member of itself; that is, S ¢ S, and define R to be the collection of all
Russell sets. Either R is a Russell set or it is not a Russell set. If R is a Russell
set, then R ¢ R, by definition. But all Russell sets lie in the collection of all
Russell sets, namely, R; that is, R € R, a contradiction. On the other hand,
if R is not a Russell set, then R does not lie in the collection of all Russell
sets; that is, R ¢ R. But now R satisfies the criterion for being a Russell
set, another contradiction. We conclude that some conditions are needed to
determine which collections are allowed to be sets. Such conditions are given
in the Zermelo—Fraenkel axioms for set theory, specifically, by the axiom of
comprehension; the collection R is not a set, and this resolves the Russell
paradox. Another approach to resolving this paradox involves restrictions on
the membership relation: some say that x € x is not a well-formed formula;
others say that x € x is well-formed, but it is always false.

Let us give a bit more detail. The Zermelo—Fraenkel axioms have prim-
itive terms class and € and rules for constructing classes, as well as for con-
structing certain special classes, called sefs. For example, finite classes and
the natural numbers N are assumed to be sets. A class is called small if it has
a cardinal number, and it is a theorem that a class is a set if and only if it is
small; a class that is not a set is called a proper class. For example, N, Z, Q, R,

Sof course, @ = dla, b, c], but [a, b, c] is not a 2-simplex in X because A has the
origin in its interior. One must do more, however, to prove that o ¢ By (X).
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and C are sets, the collection of all sets is a proper class, and the collection R
of all Russell classes is not even a class. For a more complete discussion, see
Mac Lane, Categories for the Working Mathematician, pp. 21-24, Douady—
Douady, Algébre et Théories Galoisiennes, pp. 24-25, and Herrlich—Strecker,
Category Theory, Chapter II and the Appendix. We quote Herrlich—Strecker,
p. 331.

There are two important points (in different approaches to Cate-
gory Theory). ... First, there is no such thing as the category Sets
of all sets. If one approaches set theory from a naive standpoint,
inconsistencies will arise, and approaching it from any other stand-
point requires an axiom scheme, so that the properties of Sets
will depend upon the foundation chosen. ... The second point
is that (there is) a foundation that allows us to perform all of the
categorical-theoretical constructions that at the moment seem de-
sirable. If at some later time different constructions that cannot
be performed within this system are needed, then the foundation
should be expanded to accommodate them, or perhaps should be
replaced entirely. After all, the purpose of foundations is not to ar-
bitrarily restrict inquiry, but to provide a framework wherein one
can legitimately perform those constructions and operations that
are mathematically interesting and useful, so long as they are not
inconsistent within themselves.

We will be rather relaxed about Set Theory. As a practical matter, when an
alleged class arises, there are three possibilities: it is a set; it is a proper class;
it is not a class at all (one consequence of the axioms is that a proper class
is forbidden to be an element of any class). In this book, we will not worry
about the possibility that an alleged class is not a class.

Definition. A category C consists of three ingredients: a class obj(C) of
objects, a set of morphisms Hom(A, B) for every ordered pair (A, B) of ob-
jects, and composition Hom(A, B) x Hom(B, C) — Hom(A, C), denoted
by

(f. 8) — &f.

for every ordered triple A, B, C of objects. [We often write f: A — B or

A l> B instead of f € Hom(A, B).] These ingredients are subject to the
following axioms:

(i) the Hom sets are pairwise disjointé; that is, each f € Hom(A, B) has a
unique domain A and a unique target B;

In the unlikely event that some particular candidate for a category does not have
disjoint Hom sets, then one can force them to be disjoint by redefining Hom(A, B) as
Hom(A, B) = {A} x Hom(A, B) x {B}, so that each morphism f € Hom(A, B) is now
relabeled as (A, f, B). If (A, B) # (A’, B’), then Hom(A, B) N Hom(A', B') = @.
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for each object A, there is an identity morphism 14 € Hom(A, A) such
that f14, = fand 1gf = f forall f: A — B;

e . . . A g h
composition is associative: given morphisms A — B = C — D, then

h(gf) = (hg)f.

A more important notion in this circle of ideas is that of functor, which
we will define soon. Categories are necessary because they are an essential
ingredient in the definition of functor. A similar situation occurs in Linear
Algebra: linear transformation is the more important notion, but vector spaces
are needed in order to define it.

The following examples will explain certain fine points of the definition
of category.

Example 1.3.

@

(ii)

(iii)

Sets. The objects in this category are sets (not proper classes), mor-
phisms are functions, and composition is the usual composition of func-
tions.

It is an axiom of set theory that if A and B are sets, then the class
Hom(A, B) of all functions from A to B is also a set. That Hom sets
are pairwise disjoint is just a reflection of the definition of equality of
functions, which says that two functions are equal if they have the same
domains and the same targets (as well as having the same graphs). For
example, if U C X is a proper subset of a set X, then the inclusion
function U — X is distinct from the identity function 1, for they have
different targets. If f: A — Band g: C — D are functions, we define
their composite gf: A — D if B = C. In contrast, in Analysis, one
often says g f is defined when B € C. We do not recognize this; for us,
gf is not defined, but gi f is defined, where i : B — C is the inclusion.

Groups. Objects are groups, morphisms are homomorphisms, and com-
position is the usual composition (homomorphisms are functions). Part
of the verification that Groups is a category involves checking that
identity functions are homomorphisms and that the composite of two
homomorphisms is itself a homomorphism [one needs to know that if
f € Hom(A, B) and g € Hom(B, C), then gf € Hom(A, C)].

A partially ordered set X can be regarded as the category whose objects
are the elements of X, whose Hom sets are either empty or have only
one element:

%] ifx £y,

Hom(x, y) = ]
D= i<y
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(the symbol L;‘, is the unique element in the Hom set when x =< y),
and whose composition is given by 1y = ¢;. Note that 1, = i}, by
reflexivity, while composition makes sense because < is transitive. The
converse is false: if C is a category with | Hom(x, y)| < 1 for every
x,y € obj(C), define x < y if Hom(x, y) # &. Then C may not be
partially ordered because < need not be antisymmetric. The two-point
category e = e having only two nonidentity morphisms is such an
example that is not partially ordered.

We insisted, in the definition of category, that each Hom(A, B) be a
set, but we did not say it was nonempty. The category X, where X is
a partially ordered set, is an example in which this possibility occurs.
[Not every Hom set in a category C can be empty, for 14 € Hom(A, A)
for every A € obj(C).]

(iv) Let X be a topological space, and let ¢/ denote its topology; that is, I/ is
the family of all the open subsets of X. Then I/ is a partially ordered set
under ordinary inclusion, and so it is a category as in part (iii). In this
case, we can realize the morphism Lg, when U C V, as the inclusion

ig: Uu—V.

(v) View anatural number n > 1 as the partially ordered set whose elements
are0,1,...,n—1and0 <1 < ... <n — 1. As in part (iii), there is a
category n with obj(n) = {0, 1, ..., n — 1} and with morphisms i — j

forall0 <i<j<n-—1.

(vi) Another special case of part (iii) is Z viewed as a partially ordered set
(which we order by reverse inequality, so thatn < n — 1):

e — > o —_— —— ° _— e,

n—+1 n n—1

Actually, there are some morphisms we have not drawn: loops at each n,
corresponding to identity morphisms n — n, and composites m — n
forallm > n + 1; thatis,m < n + 1.

(vii) Top. Objects are all topological spaces, morphisms are continuous
functions, and composition is the usual composition of functions. In
checking that Top is a category, one must note that identity functions
are continuous and that composites of continuous functions are contin-
uous.

(viii) The category Sets,. of all pointed sets has as its objects all ordered pairs
(X, x0), where X is a nonempty set and x¢ is a point in X, called the
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basepoint. A morphism f: (X, xg) — (Y, yo) is called a pointed map;
itis a function f: X — Y with f(xg) = yo. Composition is the usual
composition of functions.

One defines the category Top, of all pointed spaces in a similar way;
obj(Top,) consists of all ordered pairs (X, xp), where X is a nonempty
topological space and x¢p € X, and morphisms f: (X, x9) — (¥, yo)
are continuous functions f: X — Y with f(xg) = yo.

(ix) We now define the category Asc of abstract simplicial complexes and
simplicial maps.

Definition. An abstract simplicial complex K is a nonempty set
Vert(K), called vertices, together with a family of nonempty finite sub-
sets o C Vert(K), called simplexes, such that

(a) {v}is a simplex for every point v € Vert(K),

(b) every nonempty subset of a simplex is itself a simplex.

A simplex o with || = n+1 is called an n-simplex. If K and L are sim-
plicial complexes, then a simplicial map is a function ¢: Vert(K) —
Vert(L) such that, whenever ¢ is a simplex in K, then ¢(o) is a sim-
plex in L. [We do not assume that ¢ is injective; if o is an n-simplex,
then ¢ (o) need not be an n-simplex. For example, a constant function
Vert(K) — Vert(L) is a simplicial map.]

(x) Let U be an open cover of a topological space X; that is, Y = (Uj)ier
is an indexed family of open subsets with X = (J;.; U;. We define
the nerve’ N () to be the abstract simplicial complex having vertices
Vert(N (U)) = U and simplexes {U;,, U;;, ..., U;,} € U such that
m jiO Uij 7é .

(xi) Recall that a monoid is a nonempty set G having an associative binary
operation and an identity element e: thatis, ge = g = eg forall g € G.
For example, every group is a monoid and, if we forget its addition,
every ring R is a monoid under multiplication. The following descrip-
tion defines a category C(G): there is only one object, denoted by s,
Hom(x, *) = G, and composition

Hom(*, %) x Hom(*, *) — Hom(x, *)

TNerves first appeared in Lebesgue, “Sur la non applicabilité de deux domaines ap-
partenant d des espaces de n et n + p dimensions,” Math. Ann. 70 (1911), 166-168.
Lebesgue’s Covering Theorem states that a separable metric space has dimension < n if
and only if every finite open cover has a refinement whose nerve has dimension < n; see
Hurewicz-Wallman, Dimension Theory, p. 42.
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(that is, G x G — @) is the given multiplication of G. We leave
verification of the axioms to the reader.

The category C(G) has an unusual feature. Since * is merely an object,
not a set, there are no functions * — *, and so morphisms here are not
functions.

(xii) A less artificial example in which morphisms are not functions arises in

Algebraic Topology. Recall that if fy, f1: X — Y are continuous func-
tions, where X and Y are topological spaces, then fy is homotopic to f1,
denoted by fo =~ f1, if there exists a continuous function42: Ix X — Y
(where I = [0, 1] is the closed unit interval) such that £(0, x) = fo(x)
and i(1,x) = fi(x) for all x € X. One calls h a homotopy, and we
think of it as deforming fp into fi. A homotopy equivalence is a con-
tinuous map f: X — Y for which there exists a continuous g: ¥ — X
such that gf >~ ly and fg >~ ly. One can show that homotopy is an
equivalence relation on the set of all continuous functions X — Y, and
the equivalence class [ f] of f is called its homotopy class.

The homotopy category Htp has as its objects all topological spaces and
as its morphisms all homotopy classes of continuous functions (thus,
a morphism here is not a function but a certain equivalence class of
functions). Composition is defined by [ f1[g] = [fg] (if f ~ f and
g >~ ¢/, then their composites are homotopic: fg >~ f’g’), and identity
morphisms are homotopy classes [1x]. <

The next examples are more algebraic.

Example 1.4.

(i) Ab. Objects are abelian groups, morphisms are homomorphisms, and

composition is the usual composition.

(i1) Rings. Objects are rings, morphisms are ring homomorphisms, and

composition is the usual composition. We assume that all rings R have
a unit element 1, but we do not assume that 1 % 0. (Should 1 = 0,
however, the equation 17 = r for all r € R shows that R = {0}, because
Or = 0. In this case, we call R the zero ring.) We agree, as part of
the definition, that ¢(1) = 1 for every ring homomorphism ¢. Since
the inclusion map S — R of a subring should be a homomorphism, it
follows that the unit element 1 in a subring S must be the same as the
unit element 1 in R.

(ili) ComRings. Objects are commutative rings, morphisms are ring homo-

morphisms, and composition is the usual composition. <«
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We now introduce R-modules, a common generalization of abelian groups
and of vector spaces, for many applications of Homological Algebra arise in
this context. An R-module is just a “vector space over a ring R”; that is, in
the definition of vector space, allow the scalars to be in R instead of in a field.

Definition. A left R-module, where R is a ring, is an additive abelian group
M having a scalar multiplication R x M — M, denoted by (r, m) +— rm,
such that, for all m,m’ € M and r, ' € R,

Q) rm+m)) =rm+rm’,
() r+rYym=rm+r'm,
(i) (rrYym =r(’'m),
8

@iv) 1m = m.

We often write g M to denote M being a left R-module.

Example 1.5.
(i) Every vector space over a field k is a left k-module.
(ii) Every abelian group is a left Z-module.

(iii) Every ring R is a left module over itself if we define scalar multiplica-
tion R x R — R to be the given multiplication of elements of R. More
generally, every left ideal in R is a left R-module.

(iv) If S is a subring of a ring R, then R is a left S-module, where scalar
multiplication § x R — R is just the given multiplication (s, r) > sr.
For example, the center Z(R) of aring R is

Z(R):{aeR:ar:raforallreR}.

It is easy to see that Z(R) is a subring of R and that R is a left Z(R)-
module. A ring R is commutative if and only if Z(R) = R. <«

81f we do not assume that 1m = m for all m € M, then the abelian group M is a direct
sum Mgy @ M, where M) is an abelian group in which rm = O for all» € R and m € M,
and M is a left R-module. See Exercise 1.10 on page 34.
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Definition. If M and N are left R-modules, then an R-homomorphism (or
an R-map) is a function f: M — N such that, for allm,m’ € M and r € R,

(i) fm+m') = f@m)+ f(m),
(i) f(rm) =rf(m).

An R-isomorphism is a bijective R-homomorphism.

Note that the composite of R-homomorphisms is an R-homomorphism
and, if f is an R-isomorphism, then its inverse function f —1 s also an R-
isomorphism.

Example 1.6.

(1) If R is a field, then left R-modules are vector spaces and R-maps are
linear transformations.

(i) Every homomorphism of abelian groups is a Z-map.

(iii) Let M be an R-module, where R is a ring. If r € Z(R), then multi-
plication by r (or homothety) is the function u,: M — M defined by
m + rm. The functions u, are R-maps because r € Z(R): ifa € R
and m € M, then

wr(am) =r(am) = (ra)m = (ar)m = a(rm) = apu,(m). <

Definition. A right R-module, where R is aring, is an additive abelian group
M having a scalar multiplication M x R — M, denoted by (m,r) — mr,
such that, forallm,m’ € M and r,r’ € R,

() (m+m)r =mr+m'r,
(i) m@r +r") = mr +mr,
(iii) m(rr’) = (mr)r',

(iv) m = ml.

We often write Mg to denote M being a right R-module.

Example 1.7. Every ring R is a right module over itself if we define scalar
multiplication R x R — R to be the given multiplication of elements of R.
More generally, every right ideal / in R is a right R-module, for if i € I and
re R, thenirel. <«
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Definition. If M and M’ are right R-modules, then an R-homomorphism
(or an R-map) is a function f: M — M’ such that, for all m,m’ € M and
r € R,

(i) fm+m') = f@m)+ f(m'),
(i) f(mr)= f(m)r.

An R-isomorphism is a bijective R-homomorphism.

If, in a right R-module M, we had denoted mr by rm, then all the
axioms in the definition of left module would hold for M with the exception
of axiom (iii): this axiom now reads

(rr'ym = r'(rm).

This remark shows that if R is a commutative ring, then right R-modules are
the same thing as left R-modules. Thus, when R is commutative, we usually
say R-module, dispensing with the adjectives left and right.

There is a way to treat properties of right and left R-modules at the same
time, instead of first discussing left modules and then saying that a similar
discussion can be given for right modules. Strictly speaking, a ring R is an
ordered triple (R, &, u), where R is a set, «: R x R — R is addition, and
©w: R x R — R is multiplication, and these obey certain axioms. Of course,
we usually abbreviate the notation and, instead of saying that (R, v, i) is a
ring, we merely say that R is a ring.

Definition. If (R, o, ) is a ring, then its opposite ring R°P is (R, a, u°),
where 1?: R x R — R is defined by

uo(r,r'y = p@r', r).

It is easy to check that R°P is a ring. Informally, we have reversed the
order of multiplication. It is obvious that (R°P)°P = R, and that R°? = R
if and only if R is commutative. Exercise 1.11 on page 35 says that every
right R-module is a left R°P-module and every left R-module is a right R°P-
module.

Definition. The category gMod of all left R-modules (where R is a ring)
has as its objects all left R-modules, asa its morphisms all R-homomorphisms,
and as its composition the usual composition of functions. We denote the sets
Hom(A, B) in gpMod by

Homg(A, B).

If R = Z, then zMod = Ab, for abelian groups are Z-modules and homo-
morphisms are Z-maps.

There is also a category of right R-modules.
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Definition. The category Modg of all right R-modules (where R is a ring)
has as its objects all right R-modules, as its morphisms all R-homomorphisms,
and as its composition the usual composition. We denote the sets Hom(A, B)
in Modg by

Hompg (A, B)

(we use the same notation for Hom as in gMod).

Definition. A category S is a subcategory of a category C if
(i) obj(S) < obj(C),

(i) Homgs(A, B) € Hom¢ (A, B) for all A, B € obj(S), where we denote
Hom sets in S by Homgs ([, 0J),

(iii) if f € Homg(A, B) and g € Homs(B, C), then the composite gf €
Homg (A, C) is equal to the composite gf € Hom¢(A, C),

@iv) if A € obj(S), then the identity 14 € Homs(A, A) is equal to the
identity 14 € Hom¢ (A, A).

A subcategory S of C is a full subcategory if, for all A, B € obj(S), we have
Homgs (A, B) = Hom¢ (A, B).

For example, Ab is a full subcategory of Groups. Call a category discrete
if its only morphisms are identity morphisms. If S is the discrete category
with obj(S) = obj(Sets), then S is a subcategory of Sets that is not a full
subcategory. On the other hand, the homotopy category Htp is not a subcat-
egory of Top, even though obj(Htp) = obj(Top), for morphisms in Htp are
not continuous functions.

Example 1.8. If C is any category and S C obj(C), then the full subcategory
generated by S, also denoted by S, is the subcategory with obj(S) = S and
with Homs (A, B) = Hom¢ (A, B) for all A, B € obj(S). For example, we
define the category Top, to be the full subcategory of Top generated by all
Hausdorff spaces. <«

Functors’ are homomorphisms of categories.

9The term functor was coined by the philosopher R. Carnap, and S. Mac Lane thought
it was the appropriate term in this context.
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Definition. If C and D are categories, then a functor T: C — D is a func-
tion such that

(i) if A € 0bj(C), then T(A) € obj(D),
(i) if f: A — A’inC, then T(f): T(A) — T(A)inD,

(i) if A 5> A’ % A7 inC. then T(A) L 7(4") 8 T(A”) in D and

Tgf)=T@T(f),

(iv) T(14) = 17(a) for every A € obj(C).

In Exercise 1.1 on page 33, we see that there is a bijection between ob-
jects A and their identity morphism 14. Thus, we may regard a category as
consisting only of morphisms (in almost all uses of categories, however, it is
more natural to think of two sorts of entities: objects and morphisms). View-
ing a category in this way shows that the notation 7': C — D for a functor is
consistent with standard notation for functions.

Example 1.9.

(i) If S is a subcategory of a category C, then the definition of subcategory
may be restated to say that the inclusion /: & — C is a functor [this is
one reason for the presence of Axiom (iv)].

(ii) If C is a category, then the identity functor 1c: C — C is defined by
1¢(A) = A for all objects A and 1¢(f) = f for all morphisms f.

(iii) IfC is a category and A € obj(C), then the Hom functor T4 : C — Sets,
usually denoted by Hom(A, 0J), is defined by

T4(B) = Hom(A, B) for all B € obj(C),
and if f: B — B’ in C, then T4o(f): Hom(A, B) — Hom(A, B’) is

given by
Ta(f): h— fh.
We call T4 (f) = Hom(A, f) the induced map, and we denote it by f;
thus,
feih— fh.

Because of the importance of this example, we will verify the parts of
the definition in detail. First, the very definition of category says that
Hom(A, B) is a set. Note that the composite f/ makes sense:
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Suppose now that g: B’ — B”. Let us compare the functions
(gf)+» g« f+: Hom(A, B) — Hom(A, B").
If h e Hom(A, B),ie.,if h: A — B, then
(&)« h > (gf)h;

on the other hand, associativity of composition gives
gxfsi b= fhi= g(fh) = (gf)h,
as desired. Finally, if f is the identity map 15: B — B, then
(Ig)s: h—> 1ph=h
for all » € Hom(A, B), so that (15)x = 1Hom(A,B)-

(iv) A functor T: Z — C, where Z is the category obtained from Z viewed
as a partially ordered set [as in Example 1.3(vi)], is a sequence

e Cpp1 = Cy = Cpg — -

(v) Define the forgetful functor U: Groups — Sets as follows: U(G)
is the underlying set of a group G and U(f) is a homomorphism f
regarded as a mere function. Strictly speaking, a group is an ordered
pair (G, p) [where G is its (underlying) setand u: G x G — G is its
operation], and U ((G, n)) = G; the functor U “forgets” the operation
and remembers only the set. There are many variants. For example, a
ring is an ordered triple (R, o, ;) [Where «: R x R — R is addition
and #: R x R — R is multiplication], and there are forgetful functors
U': Rings — Ab with U'(R, o, u) = (R, «), the additive group of R,
and U”: Rings — Sets with U”(R, a, ) = R, the underlying set. <

We can draw pictures in a category.

Definition. A diagram in a category C is a functor D: D — C, where D is
a small category; that is, obj(D) is a set.

Let us see that this formal definition captures the intuitive idea of a dia-
gram. We think of an abstract diagram as a directed multigraph; that is, as a
set V of vertices and, for each ordered pair (u, v) € V x V, a (possibly empty)
set arr(u, v) of arrows from u to v. A diagram in a category C should be a
multigraph each of whose vertices is labeled by an object of C and each of
whose arrows is labeled by a morphism of C. But this is precisely the image
of a functor D: D — C: if u and v label vertices, then u = Da and v = Db,
where a, b € obj(D), and arr(u, v) = {Df: Da — Db | f € Homp(a, b)}.
That each a € obj(D) has an identity morphism says that there is a loop 1, at
each vertex u = Da. In drawing a diagram, we usually omit these loops; also,
we usually omit morphisms that arise as composites of other morphisms.
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Definition. A path in a category C is a functor P: n+ 1 — C, where n + 1
is the category arising from the partially ordered set0 < 1 < ... < n, as in
Example 1.3(v). Thus, P is a sequence Py, Py, ..., P,, where P; € obj(C)
for all i. A labeled path is a path in which the morphisms f;: P; — P;;| are
displayed:

P Lp Lpy s I p,
A path is simple if Py, Py, ..., P,— are distinct (we allow P, = P).

A diagram in a category commutes if, for each pair of vertices A and B,
the composites f,,—1 - -- f1fo of the labels on any two simple labeled paths
from A to B are equal.

X A4f>B

NG A
8

YyY—=7 C*,>D
k f

The triangular diagram (arising from a category D with three objects and four
nonidentity morphisms) commutes if gf = h and kf = h, and the square
diagram (arising from a category D with four objects and four nonidentity
morphisms) commutes if gf = f’g’. The term commutes in this context
arises from this last example.

A second type of functor reverses arrows.

Definition. A contravariant functor T : C — D, where C and D are cate-
gories, is a function such that

(i) if C € 0bj(C), then T(C) € obj(D),

(i) if f: C — C’"inC,then T(f): T(C') — T(C) in D (note the reversal
of arrows),

Gy if ¢ 5 ¢ & ¢”inC.then T(C") " 7’y "L T(C)in D and
T =T(NHT(g),

(iv) T(14) = 17(a) forevery A € obj(C).

To distinguish them from contravariant functors, the functors defined ear-
lier are called covariant functors.



20 INTRODUCTION CH. 1

Example 1.10. If C is a category and B € obj(C), then the contravariant
Hom functor T8 : C — Sets, usually denoted by Hom([J, B), is defined, for
all C € obj(C), by

78(C) = Hom(C, B),

and if f: C — C’inC, then TB(f): Hom(C’, B) — Hom(C, B) is given
by
TB(f): h v hf.

We also call T2 (f) = Hom(f, B) the induced map, and we denote it by f*;
thus,
5 h— hf.

Because of the importance of this example, we verify the axioms, show-
ing that Hom(O, B) is a (contravariant) functor. Note that the composite 4 f
makes sense:

Given homomorphisms

let us compare the functions
(gf)*, f*g*: Hom(C”, B) — Hom(C, B).
If h € Hom(C”, B), i.e.,if h: C"" — B, then

8N+ h— h(gf):

on the other hand,
[7g" h> hg > (hg) f = h(gf) = (hg)f,
as desired. Finally, if f is the identity map 1¢: C — C, then
(Ie)*:h+> hlc =h

for all & € Hom(C, B), so that (1¢)* = 1Hom(c,B).- <«

Example 1.11. Here is a special case of a contravariant Hom functor. Recall
that a linear functional on a vector space V over a field k is a linear transfor-
mation ¢: V — k [remember that & is a (one-dimensional) vector space over
itself]. For example, if V = {continuous f: [0, 1] — R}, then integration
f = fol f(t)dt is a linear functional on V. If V is a vector space over a
field k, then its dual space is V* = Homy (V, k), the set of all the linear func-
tionals on V. Now V* is a k-module if we defineaf: V — k (for f € V* and
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ack)byaf: v alf(v)];thatis, V*is a vector space over k. Moreover, if
f:V — W is a linear transformation, then the induced map f*: W* — V*
is also a linear transformation. (By Exercise 2.9 on page 66, if A is a matrix
of f, then the transpose A7 is a matrix for f*.) The dual space functor is
Homy (L, k):  Mod —  Mod. <«

Example 1.12. Recall Example 1.3(iii): a partially ordered set X can be
viewed as a category, where x < x’ in X if and only if Homy (x, x’) # @;
that is, Homy (x, x) = {li,}. If Y is a partially ordered setand 7: X — Y
is a covariant functor, then T(ti,) = L;i,; that is, Tx < Tx’' in Y. In other
words, a covariant functor is an order-preserving function: if x < x’, then
Tx =< Tx'. Similarly, if T: X — Y is a contravariant functor, then 7 is
order-reversing: if x < x’, then Tx > Tx'. <

Example 1.13. A functor 7: C — D is faithful if, for all A, B € obj(C),
the functions Hom¢ (A, B) — Homp(T A, T B) given by f +— T f are injec-
tions. A category C is concrete if there is a faithful functor U: C — Sets.
Informally, a concrete category is one whose morphisms may be regarded as
functions. The homotopy category Htp is not concrete, but the proof of this
fact is not obvious. <«

Example 1.14. If U is an open subset of a topological space X, define
PWU) = {continuous f:U— R}.

It is easy to see that P(U) is a commutative ring under pointwise operations:
if f,g € P(U)and x € U, then

f+g:x— f(x)+g(kx) and fg:x — f(x)gx).

If V is an open set containing U, then restriction f +— f|U is a ring homo-
morphism resg: PV)— PWU).

We generalize this construction. As in Example 1.3(iii), the topology U/
of X is a category: obj({) = U and, if U, V € U, then

o ifUZV,

Homy (U, V) = _
muW VY= G0y o e,

where i ‘[f : U — V is the inclusion.

Definition. If I/ is the topology of a topological space X and C is a category,
then a presheaf over X is a contravariant functor P: U — C. (This definition
is sometimes generalized by defining a presheaf over an arbitrary category A
to be a contravariant functor 4 — C.)
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The construction at the beginning of this example gives a presheaf P of
commutative rings over X. We have already defined P(U) for each open set
Uin X. If U C V, then the restriction map resz/, : P(V) — P(U) is defined
by f — fi ‘l,] = f|U. Itis routine to check that P is a contravariant functor
(arrows are reversed). <«

Just as opposite rings can be used to convert right modules to left modules,
opposite categories can convert contravariant functors to covariant functors.

Definition. If C is a category, define its opposite category C°P to be the cate-
gory with obj(C°P) = obj(C), with morphisms Hom¢opr (A, B) = Hom¢ (B, A)
(we may write morphisms in C°P as f°P, where f is a morphism in C), and
with composition the reverse of that in C; that is, g°P f°P = (fg)°P.

We illustrate composition in C°P: a diagram C f—p> B g—p> A in C°P
corresponds to the diagram A Ay —f> CinC.

Opposite categories are difficult to visualize. In Sets°P, for example, the
set Homgegsor (X, @), for any set X, has exactly one element, namely, i°P,
where i is the inclusion @ — X in Homgets (@, X). But i°?: X — @& cannot
be a function, for there are no functions from a nonempty set X to &.

It is easy to show that a contravariant functor 7': A — C is the same thing
as a (covariant) functor S: A°? — C (see Exercise 1.4 on page 33). Recall
that a diagram in a category C is a covariant functor D: D — C, where D is
a small category. The opposite diagram is D°?: D°° — C, which is just the
diagram in A obtained by reversing the direction of all arrows.

Here is how to translate isomorphism into categorical language.

Definition. A morphism f: A — B in a category C is an isomorphism if
there exists a morphism g: B — A in C with

gf =14 and fg=1p.
The morphism g is called the inverse of f.

Exercise 1.1 on page 33 says that an isomorphism has a unique inverse.

Identity morphisms in a category are always isomorphisms. In X, where
X is a partially ordered set, the only isomorphisms are identities; in C(G),
where G is a group [see Example 1.3(xi)], every morphism is an isomor-
phism. In Sets, isomorphisms are bijections; in Groups, gMod, Rings, or
ComRings, isomorphisms are isomorphisms in the usual sense; in Top, iso-
morphisms are homeomorphisms. A homotopy equivalence is a continuous
map f: X — Y for which there exists a continuous g: ¥ — X such that
gf ~ 1x and fg >~ ly. In the homotopy category, isomorphisms are homo-
topy classes of homotopy equivalences. We say that X and Y have the same
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homotopy type if they are isomorphic in Htp; that is, if there is a homotopy
equivalence between them.

The following result is useful, even though it is very easy to prove. See
Corollary 1.26 for an interesting application of this simple result.

Proposition 1.15. Let T: C — D be a functor of either variance. If f is an
isomorphism in C, then T (f) is an isomorphism in D.

Proof. 1If g is the inverse of f, apply the functor 7 to the equations gf = 1
and fg=1. e

How could we prove this result when C = Ab if an isomorphism is viewed
as a homomorphism that is an injection and a surjection? This proposition
illustrates, admittedly at a low level, one reason why it is useful to give cate-
gorical definitions: functors can recognize definitions phrased solely in terms
of objects, morphisms, and diagrams.

Just as homomorphisms compare algebraic objects and functors compare
categories, natural transformations compare functors.

Definition. Let S, 7: A — B be covariant functors. A natural transfor-
mation t: S — T is a one-parameter family of morphisms in B,

T=(t4: SA — TA)Aeobj(.A)v

making the following diagram commute for all f: A — A’ in A:

SA—25TA

| lrf

SA' —=TA.
A

Natural transformations between contravariant functors are defined similarly
(replace A by A°P). A natural isomorphism is a natural transformation 7 for
which each 74 is an isomorphism.

Natural transformations can be composed. If t: S - T ando: T — U
are natural transformations, where S, T, U : A — B are functors of the same
variance, then defineot: S — U by

(0T)A = 0474
for all A € obj(A). It is easy to check that o7 is a natural transformation (see
Exercise 1.15 on page 35).

For any functor S: A — B, define the identity natural transformation
ws: S — S by setting (ws)a: SA — SA to be the identity morphism 1g54.
The reader may check, using Exercise 1.15, that a natural transformation
7: 8§ — T is a natural isomorphism if and only if there is a natural trans-
formationo: T — S withot = wg and t0 = wr.
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Example 1.16.

(1) Let k be a field and let V = ; Mod be the category of all vector spaces

over k. As in Example 1.11, if V € obj(}V), then its dual space V* =
Homg (V, k) is the vector space of all linear functionalson V. If f € V*
and v € V, denote f(v) by (f,v). Of course, we are accustomed to
fixing f and letting v vary, thereby describing f as (f,[]). On the
other hand, if we fix v and let f vary, then ([J, v) assigns a value in k
to every f € V*; that is, if ({J, v) is denoted by v¢, then v¢: V* — k
is the evaluation function defined by v¢(f) = (f, v) = f(v). In fact,
v¢ is a linear functional on V*: the definitions of addition and scalar
multiplication in V* give v¢(f + g) = (f + g,v) = f(v) + gv) =
ve(f) + v°(g) and, if a € k, then v°(af) = (af,v) = a[f(v)] =
avé(f). Thus, v¢ € (V*)* (which is usually denoted by V**).

For each V € obj(V), define ty: V — V* by v — v¢ = ([0, v).
We have two (covariant) functors ¥V — V: the identity functor 1y
and the double dual O0** = Homy (Homy (O, k), k), and we claim that
7: 1y — [0 is a natural transformation. The reader may show that
each ty : V — V™ is linear; let us show commutativity of the diagram

y —> y

fi l P

If f: V. — W, then the induced map f*: W* — V* is given by g >
gf (the dual space functor is contravariant!); similarly, f**: V** —
W** is given by h — hf*. Now take v € V. Going clockwise, v
v¢ > v f*; going counterclockwise, v > f(v) — (fv)¢. To see that
these elements of W** are the same, evaluate each on h € W*:

V() = v (hf) = (hf)v and (fv)°(h) =h(f (V).

It is not difficult to see that each ty is an injection, but T may not be
a natural isomorphism. If V is infinite-dimensional, then dim(V*) >
dim(V); hence, dim(V**) > dim(V), and there is no isomorphism
V — V** On the other hand, if dim(V) < oo, a standard result of Lin-
ear Algebra (Exercise 2.9 on page 66) shows that dim(V*) = dim(V),
and so the injection ty : V — V** must be an isomorphism. Thus, if
S C Vs the subcategory of all finite-dimensional vector spaces over k,
then 7|S is a natural isomorphism.

We remark that there is no natural transformation from the identity func-
tor to the dual space functor, for these two functors have different vari-
ances.
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(i) Choose a one-point set P = {p}. We claim that Hom(P, [J): Sets —
Sets is naturally isomorphic to the identity functor on Sets. If X is a set,
define 7y : Hom(P, X) — X by f — f(p). Each ty is a bijection, as
is easily seen, and we now show that 7 is a natural transformation. Let
X and Y be sets, and let 4: X — Y; we must show that the following
diagram commutes:

hes
Hom(P, X) —— Hom(P,Y)

X Y’

where h,: f +— hf. Going clockwise, f — hf +— hf(p), while going
counterclockwise, f — f(p) — h(f(p)). <«

Notation. If F, G: A — B are functors of the same variance, then
Nat(F, G) = {natural transformations F' — G}.

The notation Nat(F, G) should be accepted in light of our remarks on Set
Theory on page 8. In general, Nat(F, G) may not be a class and, even if it
is a class, it may be a proper class (see Exercise 1.19 on page 36). The next
theorem shows that Nat(F, G) is a set when FF = Hom¢ (A, [J).

Theorem 1.17 (Yoneda Lemma). Let C be a category, let A € obj(C), and
let G: C — Sets be a covariant functor. Then there is a bijection

y: Nat(Hom¢(A, ), G) — G(A)

givenby y: T t4(14).

Proof. 1If t: Hom¢(A,J) — G is a natural transformation, then y(t) =
t4(14) lies in the set G(A), for t4: Homg(A, A) — G(A). Thus, y is a
well-defined function.

For each B € obj(C) and ¢ € Hom¢ (A, B), there is a commutative dia-
gram

Home (A, A) —2—~ G A

| le

HOI’IIC(A, B) ?‘ GB:

so that
(Gp)ta(la) =t (14) = t(01a) = TB(9).



26 INTRODUCTION CH. 1

If o: Homg(A, ) — G is another natural transformation, then og(¢) =
(Gp)oa(1y). Hence, if 04(14) = ta(l4), then op = tp for all B € obj(C)
and, hence, 0 = 7. Therefore, y is an injection.

To see that y is a surjection, take x € G(A). For B € obj(C) and ¥ €
Hom¢ (A, B), define

3(¥) = (GY)(x)

[note that GY: GA — GB, so that (G{¥)(x) € GB]. We claim that t is
a natural transformation; that is, if 6: B — C is a morphism in C, then the
following diagram commutes:

Home (A, B) -2~ GB

q lag

Going clockwise, we have (GO)tp(¥) = GOGY(x); going counterclock-
wise, we have 10, (V) = 1¢(0y¥) = G(0y)(x). Since G is a functor, how-
ever, G(0Y) = GOGY; thus, T is a natural transformation. Now y(7r) =
t4(14) = G(14)(x) = x, and so y is a bijection. e

Definition. A covariant functor F': C — Sets is representable if there exists
A € obj(C) with F = Hom¢ (A, OJ).

Theorem 5.50 characterizes all representable functors g Mod — Ab. The
most interesting part of the next corollary is part (iii), which says that if F is
representable, then the object A is essentially unique.

Corollary 1.18. Let C be a category and let A, B € obj(C).

(1) If t: Hom¢(A, D) — Home (B, ) is a natural transformation, then
for all C € obj(C), we have t¢c = *, where = t4(l4): B - A
and Y* is the induced map Hom¢g (A, C) — Homg(B, C) given by
@ > @Y. Moreover, the morphism  is unique: if tc = 0%, then

0=

(ii) Let Hom¢(A,0) — Home(B,0) — Home(B',0) be natural
transformations. If oc = n* and t¢ = Y* for all C € obj(C), then

(ot)c = (Yym)*.

(iii) If Hom¢g (A, OJ) and Home (B, O) are naturally isomorphic functors,
then A = B. (The converse is also true; see Exercise 1.16 on page 36.)
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Proof.

®

(ii)

(iii)

If we denote t4(14) € Hom¢ (B, A) by v, then the Yoneda Lemma
says, for all C € obj(C) and all ¢ € Hom¢ (A, C), that tc(¢) = ¢ (V).
But ¢.(¥) = ¢ = ¥*(¢). The uniqueness assertion follows from
injectivity of the Yoneda function y.

By part (i), there are unique morphisms v € Hom¢(B, A) and n €
Hom¢(B’, B) with

(@) =¥ (p) and oc(¢) =n*(¢)

forall ¢ € Hom¢(A, C) and ¢’ € Homg (B, C). By definition, (07)¢c =
ocTc, and so

(00)c(p) = oc(™ (@) = " (p) = (Y *(g).

If r: Hom¢(A,D) — Homge(B, D) is a natural isomorphism, then
there is a natural isomorphism ¢ : Hom¢ (B, [J) — Hom¢ (A, OJ) with
0T = WHome(A,[) and TO = ®WHome(B,00)- By part (i), there are mor-
phisms ¥: B — A and n: A — B with t¢ = ¢* and o¢c = n* for
all C € obj(C). By part (ii), we have o = ¥*n* = (ny)* = 1} and
ot = (Yn)* = 1. The uniqueness in part (i) now gives yn = 14 and
ny = 1p,sothatn: A — B is an isomorphism. e

Example 1.19.

@

(i)

(iii)

Informally, if A and B are categories, the functor category B4 has as
its objects all covariant functors A — B and as its morphisms all nat-
ural transformations. Each functor F: A — B has an identity natural
transformation wr: F — F, and a composite of natural transforma-
tions is itself a natural transformation (see Exercise 1.15 on page 35).
But there is a set-theoretic problem here: Nat(F, G) need not be a set.
Recall that a category A is small if the class obj(A) is a set; in this case,
Nat(F, G) is a set, and so the formal definition of the functor category
BA requires .4 to be a small category (see Exercise 1.19 on page 36).
Note that all contravariant functors and natural transformations form the
category BA” | which is essentially the same as (3°P)*.

A diagram in a category C is a (covariant) functor D: D — C, where D
is a small category. Thus, D € CP.

As in Example 1.3(vi), view Z as a partially ordered set under reverse
inequality. A functor in Ab? is essentially a sequence (we have not
drawn identities and composites)

dyi1 d
v Apy =5 Ay s A >
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A natural transformation between two such functors is a sequence of
maps (..., fu+1» fu> fu—1,...) making the following diagram commute.

d+] d
"*>An+lL>An*n>An71*>"'

S| | =
/

A complex (or chain complex) is such a functor with the property that
dnd,+1 = 0 for all n, and a natural transformation between complexes
is usually called a chain map. Define Comp to be the full subcategory
of Ab? generated by all complexes.

(iv) Recall (Example 1.14): a presheaf P over a topological space X is
a contravariant functor P: &/ — Ab, where the topology ¢/ on X is
viewed as a (small) category. If G: &/ — Ab is another presheaf over
X, then a natural transformation t: P — @ is a one-parameter family
of morphisms tyy: P(U) — G(U), where U € U, making the following
diagram commute forall U C V.

PV) —>G(V)
P(f)l J{g(f)
PU) —— G(U)

Presheaves over a space X comprise the functor category AbY”  which
we denote by pSh(X, Ab). <«

Corollary 1.20 (Yoneda Imbedding). If C is a small category, then there
is a functor Y : C°° — SetsC that is injective on objects and whose image is a
full subcategory of SetsC.

Proof. Define Y on objects by Y (A) = Hom¢ (A, ). If A % A/, then pair-
wise disjointness of Hom sets gives Home (A, () # Home(A’, O); that is,
Y(A) # Y(A), and so Y is injective on objects. If y: B — A is a mor-
phism in C, then there is a natural transformation Y (y/): Hom¢(A, ) —
Hom¢ (B, ) with Y(¢¥)c = ¢* for all C € obj(C), by Corollary 1.18(i).
Now Corollary 1.18(ii) gives Y (¥n) = Y ()Y (), and so Y is a contravari-
ant functor. Finally, surjectivity of the Yoneda function y in Theorem 1.17
shows that every natural transformation Hom¢ (A, [J) — Homg (B, [J) arises
as Y (¢) for some . Therefore, the image of Y is a full subcategory of the
functor category SetsC. o

We paraphrase the Yoneda imbedding by saying that every small category
is a full subcategory of a category of presheaves.
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1.3 Singular Homology

In the first section, we defined homology groups H,(X) for every finite sim-
plicial complex X; we are now going to generalize this construction so that it
applies to all topological spaces. Once this is done, we shall see that each H,
is actually a functor Top — Ab.' The reader will see that the construction
has two parts: a topological half and an algebraic half.

Definition. Recall that Hilbert space is the set H of all sequences (x;),
where x; € R for all i > 0, such that Z?io xi2 < 00. Euclidean space R" is
the subset of H consisting of all sequences of the form (xg, ..., x;,-1,0,...)
with x; = 0 for all i > n.

We begin by generalizing the notion of n-simplex, where a 0-simplex is a
point, a 1-simplex is a line segment, a 2-simplex is a triangle (with interior), a
3-simplex is a (solid) tetrahedron, and so forth. Here is the precise definition.

Definition. The standard n-simplex is the set of all (convex) combinations

n
A" =Teg, ..., e,] = {toeo—{—---—l—tnen :t; > 0and Zt,- = 1},
i=0

where e; denotes the sequence in H having 1 in the ith coordinate and 0
everywhere else. We may also write fgeg + - - - + 1€, as the vector (fo, ..., ;)
in R"*! C H. The ith vertex of A" is ¢;; the jth faces of A", for0 < j < n,
are the convex combinations of j of its vertices.

If X is a topological space, then a singular n-simplex in X is a continuous
map o : A" — X, where A" is the standard n-simplex.

Definition. If X is a topological space, define S_1(X) = {0} and, for each
n > 0, define S,(X) to be the free abelian group with basis the set of all
singular n-simplexes in X. The elements of S,(X) are called singular n-
chains.

The boundary of a singular n-simplex o ought to be
n
I (0) = Z(—l)"a|[e0, e el
i=0
However, this is not an (n — 1)-chain, because [e, ..., ¢;, ..., e,] is not the
standard (n — 1)-simplex, and so the restriction o |[eq, ..., ¢, ..., e,] is not
a singular (n — 1)-simplex. We remedy this by introducing face maps.

l()Simplicial homology H), is also functorial, but defining H,, (f) for a simplicial map f
is more complicated, needing the Simplicial Approximation Theorem.
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Definition. Define the ith face map e?: A 5 A" where 0 < i < n, by
putting O in the ith coordinate and preserving the ordering of the other coor-
dinates: the points of [eg, ..., e,—1] are convex combinations (fo, ..., #;) =
toeog + - -+ t,_1e,—1, and so

E?Z(lo,...,ln_l)l—) O,19,...,t,—1)ifi =0, -

(to, ..., ti—1,0,t;, ..., t,—1)ifi > 0.

The superscript indicates that the target of €] is A". For example, there
are three face maps 6i2: Al > AZ: 65: (to, t1) — (0, 1o, 11); 6122 (to, 1)
(10,0, t1); and e%: (to, t1) + (to, t1,0). The images of these face maps are
the 1-faces of the triangle [eg, e1, e2].

The following identities hold for face maps.

Lemma 1.21. [f0 < j <i <n — 1, then the face maps satisfy

n_n—1 _ n_n—1, An=2 n
€€ =€ A — A"

Proof. The straightforward calculations are left to the reader. o

We can now define boundary maps.

Definition. Let X be a topological space. If o is a O-simplex in X, define
do(0) =0.If n > 1Tando: A" — X is an n-simplex, define

(o) =) (=o€
i=0

Define the singular boundary map 9, : S,(X) — S,—1(X) by extending by
linearity.

Proposition 1.22. Foralln > 1,
Op—10, = 0.

Proof. 'We mimic the proof of Proposition 1.1. For any n-simplex o,

00-10(0) = oy (Y (= Dioe]')
=Y (=13, 1(c€)
= Z(—l)i Z(—l)jae;’e;’_l
i J

= Z(—l)"ﬂaefe;’*l + Z(—l)""’jaefe;’*l.

J<i jzi
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fe;.’_l = ae;.’e;’:ll if j <i. Th§ term oei”e;’_l
occurs in the first sum (over all j < i) with sign (—1)'™/, and the term

cre;?el.'ljll occurs in the second sum (the first index j is now the larger in-

dex), and with opposite sign (—1)/7 =1, Thus, all terms in 9 (o) cancel, and
30 =0. e

By Lemma 1.21, we have o€

We can now define singular cycles and singular boundaries.

Definition. For each n > 0, the group of singular n-cycles is Z,,(X) =
ker d;,, and the group of singular n-boundaries is B, (X) = im 9,4 1.

Corollary 1.23. B,(X) C Z,(X) for all n.

Proof. 1f z € B,(X) = imd,41, then z = 9,41c for some ¢ € Cp, 41, and
0pz = 0y0p+1c =0. o

Definition. The nth singular homology group of a topological space X is
Hn(X) = Zn(X)/Bn(X)-

We are now going to show that each H,, is a functor. If f: X — Y isa
continuous map and o : A" — X is an n-simplex in X, then the composite
fo: A" — Y isann-simplex in Y, for a composite of continuous functions is
continuous. Hence, fo € S,(Y), and we define the chain map fu: S, (X) —

Su(Y) by
fu: nga — ngfo.

It is usually reckless to be careless with notation, but the next lemma
shows that one can sometimes do so without causing harm (moreover, it is
easier to follow an argument when notational clutter is absent). Strictly speak-
ing, notation for a chain map f3 should display n, X, and Y, while boundary
maps 9, : Sp(X) — S,—1(X) obviously depend on X.

Lemma 1.24. [f f: X — Y is a continuous map, then oy, fu = fudy; that
is, there is a commutative diagram

Sn(X) i>' n—l(X)

5 |

Sn(¥) — > Su1 (Y).

Proof. Tt suffices to evaluate each composite on a basis element o of S, (X).
Now

frio = fu( 3 (~Dioer) = 3 (=) fuoe) = Y (1) f(€).
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On the other hand,
dfe(0) = 3(fo) =Y (=D (fo)ei.

These are equal, by associativity of composition. e

Theorem 1.25. For every n > 0, singular homology H,,: Top — Ab is a
functor.

Proof. Having already defined H,, on objects by H,(X) = Z,(X)/B,(X),
we need only define it on morphisms. If f: X — Y is a continuous map,
define H,(f): H,(X) - H,(Y) by

H,(f): clsz, — cls faz,,

where z,, is an n-cycle in X and clsz;, = z, + B, (X). In more detail, z, is
a linear combination of simplexes o; in X, and H,(f) sends cls z, into the
corresponding linear combination of cosets of simplexes fo; in Y.

We claim that fyz, is an n-cycle in Y. If z, is a cycle, then Lemma 1.24
gives dfyz, = f#dz, = 0. Thus, f#(Z,(X)) € Z,(Y). But we also have
f#(By(X)) € By(Y), forif du € B,(X), then Lemma 1.24 gives fyou =
dfyu € B, (Y). It follows that H, (f) is a well-defined function. We let the
reader prove that H, (f) is a homomorphism, that H,(1x) = 1p,(x), and that
if g: Y — Y’ is a continous map, then H, (gf) = H,(g)H,(f). e

It is true that if fy, f1: X — Y are homotopic maps, then H,(fy) =
H,(f1) for all n > 0 (Spanier, Algebraic Topology, p. 175). It follows that the
homology functors are actually defined on the homotopy category Htp (recall
that morphisms in Htp are homotopy classes [ f] of continuous maps), and
we may now define H, ([ f]) = H,(f).

Corollary 1.26. If X and Y are topological spaces having the same homo-
topy type, then H,(X) = H, (Y) for alln > 0.

Proof. An isomorphism in Htp is a homotopy class [f] of a homotopy
equivalence f. By Proposition 1.15, any functor takes an isomorphism into
an isomorphism. e

A topological space X is called contractible if 1y ~ ¢, wherec: X — X
is a constant map [c(x) = xp € X for all x € X]. For example, euclidean
space R" is contractible. It is easy to see that contractible spaces have the
same homotopy type as a one-point set, and so their homology groups are
easily computable: Hy(X) = Z and H,(X) = {0} forn > 1.

Define a functor S: Top — Comp, the category of complexes defined in
Example 1.19(ii): to each topological space X, assign the complex

On B
S.(X)=~--—>Sn+1—H)Sn—)Sn_l—).-.;
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to each continuous map X — Y, assign the chain map fi: Se(X) — So(Y).
The nth homology functor is the composite Top — Comp — Ab, where
Comp — Ab is defined by S¢(X) — H,(X) and f3 — H,(f). Thus, in a
very precise way, we see that homology has a topological half and an algebraic
half, for the functor Top — Comp involves the topological notions of spaces
and continuous maps, while the functor Comp — Ab involves only algebra.
Homological Algebra is the study of this algebraic half.

Exercises
.1 (i)
(i)
1.2 @)
(i)

Prove, in every category C, that each object A € C has a
unique identity morphism.

If f is an isomorphism in a category, prove that its inverse
is unique.

Prove that there is a functor F: ComRings — ComRings
defined on objects by F': R + R[x] and on morphisms
¢: R — Sby Fo:ro+rix+ -+ rx" — @) +
@rx + -+ @(ra)x".

Prove that there is a functor on Dom, the category of all
(integral) domains, defined on objects by R + Frac(R),
and on morphisms f: R — Sbyr/l — f(r)/l.

1.3 Let A 3, B AN C be functors. If the variances of S and T
are the same, prove that the composite 7S: A — C is a covariant
functor; if the variances of S and T are different, prove that 7'S is a
contravariant functor

*14 If T: A — B is a functor, define T°P: A°® — B by T°P(A) =
T(A) for all A € obj(A) and T°P(f°P) = T'(f) for all morphisms
f in A. Prove that T°P is a functor having variance opposite to the
variance of 7.

1.5

*1.6

)

(ii)

()

If X is a set and k is a field, define the vector space kX to
be the set of all functions X — k under pointwise opera-
tions. Prove that there is a functor G : Sets — Mod with
G(X) = k*X.

Define U :  Mod — Sets to be the forgetful functor [see
Example 1.9(v)]. What are the composites GU : ;Mod —
Mod and UG : Sets — Sets?

If X is a set, define FX to be the free group having ba-
sis X; that is, the elements of FX are reduced words on
the alphabet X and multiplication is juxtaposition followed
by cancellation. If ¢: X — Y is a function, prove that
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(ii)

*1.7 ()

(ii)

(iii)

there is a unique homomorphism Fg¢: FX — FY such
that (Fp)|X = ¢.

Prove that the F': Sets — Groups is a functor (F is called
the free functor).

Define C to have objects all ordered pairs (G, H), where
G is a group and H is a normal subgroup of G, and to
have morphisms ¢, : (G, H) — (G, Hy), where ¢: G —
G is a homomorphism with ¢(H) € Hj. Prove that C
is a category if composition in C is defined to be ordinary
composition.

Construct a functor Q: C — Groups with Q(G, H) =
G/H.

Prove that there is a functor Groups — Ab taking each
group G to G/G’, where G is its commutator subgroup.

1.8 If X is a topological space, define C(X) to be its ring of continuous
real-valued functions, C(X) = { f:X—>R: fis continuous}, un-
der pointwise operations: f + g: x — f(x) 4+ g(x) and fg: x —
f(x)g(x). Prove that there is a contravariant functor 7: Top —
ComRings with 7(X) = C(X). [A theorem of Gelfand and Kol-
mogoroff (see Dugundji, Topology, p. 289) says that if X and Y are
compact Hausdorff spaces and the rings C(X) and C(Y) are iso-
morphic, then the spaces X and Y are homeomorphic.]

1.9 Let X be a set and let B(X) be the Boolean ring whose elements
are the subsets of X, whose multiplication is intersection, and whose
addition is symmetric difference: if A, B C X, then AB = AN B,
A+B=(A—B)U(B— A),and —A = A. You may assume that
B(X) is a commutative ring under these operations in which & is
the zero element and X is the 1 element.

@

(i)

(iii)

(iv)

(v)

Prove that 5(X) has only one unit (recall that an element
u € R is aunit if there is v € R with uv = 1 = vu).

If Y C X is a proper subset of X, prove that B(Y) is not a
subring of B(X).

Prove that a nonempty subset / € B(X) is an ideal if and
only if A € I implies that every subset of A also lies in /.
In particular, the principal ideal (A) generated by a subset
A is the family of all the subsets of A.

Prove that every maximal ideal M in B(X) is a principal
ideal of the form (X — {x}) for some x € X.

Prove that every prime ideal in B(X) is a maximal ideal.

*1.10 Let R be a ring. Call an (additive) abelian group M an almost left

R-module if there is a function R x M — M satisfying all the
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axioms of a left R-module except axiom (iv): we do not assume
that Im = m for all m € M. Prove that M = M| & M, (direct
sum of abelian groups), where M| = {m € M: lm = m} and
My = {m € M: rm = 0forall r € R} are subgroups of M that are
almost left R-modules; in fact, M| is a left R-module.
*1.11 Prove that every right R-module is a left R°P-module, and that every
left R-module is a right R°P-module.
1.12 If R and A are rings, an anti-homomorphism ¢: R — A is an
additive function for which ¢(rr’) = @(r")e(r) forall r, r’ € R.

(i) Prove that R and A are anti-isomorphic if and only if A
R°P.

(i) Prove that transposition B — B is an anti-isomorphism
of a matrix ring Mat, (R) with itself, where R is a commu-
tative ring. (If R is not commutative, then B — BT is an
isomorphism [Mat, (R)]°? = Mat, (R°P).)

*1.13 An R-map f: M — M, where M is a left R-module, is called an
endomomorphism.

(i) Prove that Endg(M) = {f: M — M : f is an R-map} is
a ring (under pointwise addition and composition as multi-
plication) and that M is a left Endg (M)-module. We call
Endg (M) the endomorphism ring of M.

~

(ii) If aring R is regarded as a left R-module, prove that there
is an isomorphism Endg (R) — R°P of rings.
1.14 (i) Give an example of topological spaces X, Y and an in-
jective continuous map i: X — Y whose induced map
H,(@{): H,(X) — H,(Y) is not injective for some n > 0.
Hint. You may assume that H; (S hz=z.

(ii) Give an example of a subspace A € X of a topologi-
cal space X and a continuous map f: X — Y such that
H,(f) # 0forsomen > 0and H,(f|A) =0.

*1.15 Let F,G: A — Band F',G': B — C be functors of the same
variance, and let 7: F — G and t’: F/ — G’ be natural transfor-
mations.

(i) Prove that their composite T’ is a natural transformation
F'F — G'G where, for each A € obj(A), we define

(t'1)a = tp ta: F'F(A) = G'G(A).
(ii) If r: F — G is a natural isomorphism, define o¢c: FC —

GC for all C € obj(A) by o¢c = IEI. Prove that o is a
natural transformation G — F.
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*1.16 Let C be a category and let A, B € obj(C). Prove the converse of
Corollary 1.18: if A = B, then Hom¢ (A, [J) and Hom¢ (B, L) are
naturally isomorphic functors.

Hint. If «: A — B is an isomorphism, define t¢ = (= Hy*.

1.17

()

(i)

Let A be the category with obj(A) = {A, B, C, D} and
morphisms Hom 4 (A, B) = {f}, Hom4(C, D) = {g}, and
four identities. Define F: A — Sets by F(A) = {1},
F(B) = {2} = F(C), and F(D) = {3}. Prove that F is a
functor but that im F is not a subcategory of Sets.

Hint. The composite Fg o Ff, which is defined in Sets,
does not lie in im F.

Prove that if F: A — B is a functor with F|obj(A) an
injection, then im F is a subcategory of 5.

1.18 Let A and B be categories. Prove that A x B is a category, where
obj(AxB) = obj(A) xobj(B), where Hom 4x5((A1, B1), (A2, By))
consists of all (f, g) € Hom4 (A, Az) x Homg(Bj, B;), and where
composition is (', &) (f, &) = (f'f. g'g)-

*1.19

()

(i)

If A is a small category and F, G: A — B are functors
of the same variance, prove that Nat(F, G) is a set (not a
proper class).

Give an example of categories C, D and functors S, 7: C —
D such that Nat(S, T') is a proper class. [As discussed on
page 8, do not worry whether Nat(S, 7') is a class.]

Hint. Let S be a discrete subcategory of Sets, and consider
Nat(7', T), where T : S — Sets is the inclusion functor.

1.20 Show that Cat is a category, where obj(Cat) is the class of all small
categories, where Homcgat (A, B) = B4, and where composition is
the usual composition of functors. [We assume that categories here
are small in order that Homcat (A, B) be a set.]



Hom and Tensor

The most important functors studied in Homological Algebra are Hom, tensor
product, and functors derived from them. We begin by describing certain
constructs in gkMod, such as sums, products, and exact sequences, and we will
then apply Hom functors to them. Tensor products will then be introduced,
and we will apply these functors to the constructs in gMod as well. There is
an intimate relationship between Hom and tensor—they form an adjoint pair
of functors.

2.1 Modules

Many properties of vector spaces and of abelian groups are also enjoyed by
modules. We assume that much of this section is familiar to most readers, and
S0 our account is written to refresh one’s memory. All rings R in this book
are assumed to have an identity element 1 (or unit) (where r1 = r = 1r for
all r € R). We do not insist that 1 # 0; however, should 1 = 0, then R is the
zero ring having only one element. If f: R — S is a ring homomorphism,
we assume that f(1) = 1; thatis, f(1) is the identity element of S.

We can view modules as a tool for studying rings. If M is an abelian
group, then we saw, in Exercise 1.13 on page 35, that

Endz(M) = {homomorphisms f: M — M}

is a ring under pointwise addition [ f + g: m +— f(m) + g(m)] and composi-
tion as multiplication. A representation of a ring R is a ring homomorphism
¢: R — Endz(M) for some abelian group M.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 37
DOI 10.1007/978-0-387-68324-9_2, (© Springer Science+Business Media LLC 2009
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Proposition 2.1. Let R be a ring and let M an abelian group. If ¢: R —
End(M) is a representation, define 6: R x M — M by o(r,m) = ¢,(m),
where we write ¢(r) = @,; then o is a scalar multiplication making M into a
left R-module. Conversely, if M is a left R-module, then the function ¥ : R —
End(M), given by {(r): m +— rm, is a representation.

Proof. The proof is straightforward. e

Example 2.2. Let G be a finite! group and let k be a commutative ring.
The group ring is the set of all functions &: G — k made into a ring with
pointwise operations: for all x € G,

a+B:x— alx)+pBx) and af: x> a(x)B(x).
If y € G, the function §y, defined by
1 ifx =y,
0 ifx #y,

is usually denoted by y. It is easy to check that kG is a k-module and that
each y € kG has a unique expression

Yy = Zayya

yeG

8y(x) =

where a, € k. In this notation, elements of G multiply as they do in G; in
particular, the identity element 1 in G is also the unit in kG. Multiplication in
kG is called convolution, and a formula for it is

(; axx) <Xy: byy> = ny:axbyxy = XZ:(XX: axbx_lz)z.

Recall that if G is a group and & is a commutative ring, then a k-representation
of G is a function o : G — Mat, (k) with

o(xy) =o(x)o(y),
o(1) =1, the identity matrix.
For all x € G, we have o(x) nonsingular, for I = o(1) = oxx™ 1) =
o(x)o (x~1). It follows that o is a group homomorphism G — GL(n, k), the

multiplicative group of all nonsingular n x n matrices over k. It is easy to see
that o extends to a ring homomorphism ¢ : kG — Mat, (k) by

8(2 ayy) = Zaya(y).
y y

IThis construction can be done for infinite groups G as well; the elements of kG are
the functions &: G — k for which «a(y) = 0 for all but a finite number of y € G.
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Thus, 6 : kG — End(k"), so that ¢ is a representation of the group ring
kG. By Proposition 2.1, the group representation o corresponds to a left kG-
module. <«

Lemma 2.3. IfA, B € obj(gMod) [or if A, B € obj(ModR)], then the set
Homg (A, B) is an abelian group. Moreover, if p: A’ — Aandq: B — B’
are R-maps, then

(f+8p=fp+gp and q(f+g =qf +qg.

Proof.  One easily checks that f+g is an R-map; thus, f+g € Homg (A, B)
and addition is an operation on Homg (A, B). The zero in Homg (A, B) is the
constant map a +— 0, and the inverse of f: A — Bis—f:a+> —[f(a)]. It
is routine to see that addition is associative, and so Homg (A, B) is an abelian
group. The last equations are checked by evaluating eachona € A. e

Proposition 2.4. Let R be a ring, and let A, B, B’ be left R-modules.
(1) Homg (A, O) is an additive functor RMod — Ab.

(1) If A is a left R-module, then Homg (A, B) is a Z(R)-module, where
Z(R) is the center of R, if we define

rf:aw— f(ra)

forr € Z(R)and f: A — B. Ifg: B — B’ is an R-map, then the
induced map q,: Homg(A, B) — Homg(A, B') is a Z(R)-map, and
Homg (A, O) takes values in z(gyMod. In particular, if R is commuta-
tive, then Homg (A, UJ) is a functor gMod — rMod.

Proof.

(i) Lemma 2.3 shows that Homg (A, B) is an abelian group and, for all

q: B — B',thatq(f +g) = qf +qg; thatis, g.(f + &) = q.(f) +
q«(g). Hence, g, is a homomorphism. Since Homg (A, [J) preserves
identities and composition, it is an additive functor with values in Ab.

(ii)) We show that if r € Z(R), then rf, as defined in the statement, is a
Z(R)-map. If s € R, then rs = sr and

(rf)(sa) = f(r(sa)) = f((rs)a) = (rs) fa = (sr) fa = s[rfl(a).

It follows that Homg (A, B) is a Z(R)-module. If g: B — B’ is an
R-map, we show that the induced map ¢g.: f +— ¢f is a Z(R)-map.
Now g, is additive, by part (i). We check that g.(rf) = rq.(f), where
r € Z(R); thatis, g(rf) = (rq)f. Butq(rf): a — q(f(ra)), while
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(rq)f:a (rq)(f(a)) =q(rf(a)) = qf(ra), because q is a Z(R)-
map and f is an R-map. Therefore, ¢, is a Z(R)-map. The last state-
ment is true because R is commutative if and only if R = Z(R). e

We have generalized the familiar fact that if V and W are vector spaces
over a field k, then Homy (V, W) is also a vector space over k.

If Ris aring and B is a left R-module, then the contravariant Hom functor
Hompg ([J, B): Modr — Sets also has more structure.

Proposition 2.5. Let R be a ring, and let A, A’, B be left R-modules.
(1) Homg (LI, B) is a contravariant functor gMod — Ab.

(1) If B is a left R-module, then Homg (A, B) is a Z(R)-module, where
Z(R) is the center of R, if we define

rf:aw— f(ra)

forr € Z(R)and f: A — B. If p: A — A’ is an R-map, then the
induced map p*: Hompg(A’, B) — Homg(A, B) is a Z(R)-map, and
Hom(U, B) takes values in z(gyMod. In particular, if R is commuta-
tive, then Homg (L1, B) is a contravariant functor gRMod — gMod.

Proof.  Similar to the proof of Proposition 2.4. e

Example 2.6. As in Example 1.11, the dual space V* = Homg(V, k) of a
vector space V over a field k is also a vector space over k. <«

Definition. A functor 7: xfMod — Ab of either variance is called an addi-
tive functor if, for every pair of R-maps f, g: A — B, we have

T(f+e)=T(f)+T(g).

We have just seen that Hom functors gkMod — Ab of either variance are
additive functors. If 7: C — D is a covariant functor between categories C
and D, then there are functions

Tap: Hom¢g(A, B) - Homp(T A, TB),

namely, i +— T(h). If T: RpMod — Ab is an additive functor, then each
Tap is a homomorphism of abelian groups; the analogous statement for con-
travariant functors is also true.
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Proposition 2.7. Let T: gkMod — Ab be an additive functor of either
variance.

(1) If0: A — B is the zero map, that is, the map a — 0 for all a € A,
then T (0) = 0.

() T(fop ={0}.
Proof.

(1) Since T is additive, the function T4 g between Hom sets is a homomor-
phism, and so it preserves identity elements; that is, 7°(0) = 0.

(i1) If A is a left R-module, then 0 = 14 if and only if A = {0} [sufficiency
is obvious; for necessity, if 14 = 0, then for all a € A, we have a =
Ia(a) = 0(a) = 0, and so A = {0}]. By part (i), we have T'(1g)) =
T0)=0,andso T({0}) ={0}. e

We now show that many constructions made for abelian groups and for
vector spaces can be generalized to left modules over any ring. A submodule S
is a left R-module contained in a larger left R-module M such that if s, s’ € S
and r € R, then s + 5" and rs have the same meaning in S as in M.

Definition. If M is a left R-module, then a submodule N of M, denoted by
N C M, is an additive subgroup N of M closed under scalar multiplication:
rn € N whenever n € N and r € R. A similar definition holds for right
modules.

Example 2.8.

(i) A submodule of a Z-module (i.e., of an abelian group) is a subgroup,
and a submodule of a vector space is a subspace.

(i) Both {0} and M are submodules of a module M. A proper submodule
of M is a submodule N € M with N # M. In this case, we may write
NCM.

(iii) If a ring R is viewed as a left module over itself, then a submodule
of R is a left ideal; [ is a proper submodule when it is a proper left
ideal. Similarly, if R is viewed as a right module over itself, then its
submodules are its right ideals.

(iv) If M is an R-module and » € R, where R is a commutative ring, then

rM ={rm: m € M}
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is a submodule of M. Here is a generalization. If J is an ideal in R and
M is an R-module, then

M = {Zjimi: ji € J and m; eM}
i

is a submodule of M.
(v) If S and T are submodules of a left module M, then
S+T={s+t:seSandt €T}
is a submodule of M that contains S and 7.

(vi) If (S;);er 1s a family of submodules of a left R-module M, then ﬂi c1 Si
is a submodule of M.

(vii) A left R-module S is cyclic if there exists s € S with S = {rs : r € R}.
If M is an R-module and m € M, then the cyclic submodule generated
by m, denoted by (m), is

(m) ={rm:r € R}.
More generally, if X is a subset of an R-module M, then
(X) = {Zrixi: ri € Rand x; € X},
finite

the set of all R-linear combinations of elements in X. We call (X)
the submodule generated by X. Exercise 2.10 on page 66 states that

(X) = ngS S. «

Definition. A left R-module M is finitely generated if M is generated by a
finite set; that is, if there is a finite subset X = {x, ..., x,} with M = (X).

For example, a vector space V over a field k is a finitely generated k-
module if and only if V is finite-dimensional.

Definition. If NV is a submodule of a left R-module M, then the quotient
module is the quotient group M /N (remember that M is an abelian group and
N is a subgroup) equipped with the scalar multiplication

r(m+ N)=rm+ N.

The natural map =: M — M /N, given by m — m + N, is easily seen to be
an R-map.

Scalar multiplication in the definition of quotient module is well-defined:
ifm+ N =m'+ N,thenm —m’ € N. Hence, r(m —m’) € N (because N
is a submodule), rm —rm’ € N,andrm + N =rm’ + N.
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Example 2.9. If N € M is merely an additive subgroup of M but not a
submodule, then the abelian group M /N is not an R-module. For example,
let V be a vector space over a field k. If a € k and v € V, then av = 0 if and
onlyifa =0orv =0][ifa # 0, then 0 = a '(av) = (@ 'a)v = v]. Now
Q is a vector space over itself, but Q/Z is not a vector space over Q [we have
2(% + 7Z) = Z in Q/7Z, and neither factor is zero]. <

Example 2.10.

(1) Recall that an additive subgroup J C R of aring R is a two-sided ideal
ifx e Jandr € Rimply rx € J and xr € J. If R = Maty(k), the
ring of all 2 x 2 matrices over a field k, then I = {[Z 8] ta,b e k} is

a left ideal and I’ = {[f‘) 8] ta,b e k} is a right ideal, but neither is a
two-sided ideal.

(i1) If J is a left (or right) ideal in R, then R/J is a left (or right) R-module.
If J is a two-sided ideal, then R/J is a ring with multiplication

r+JNs+J)=rs+J.

This multiplication is well-defined, forif r +J =r'+ Jand s + J =
s'+ J,thenrs +J =r's’ + J, because

rs—r's' =rs—r's+r's—r's = —-r)s+r's—s)el. <
We continue extending definitions from abelian groups and vector spaces
to modules.
Definition. If f: M — N is an R-map between left R-modules, then

kernelf =ker f = {m € M: f(m) = 0},
image f =im f = {n € N: there exists m € M withn = f(m)},
cokernel f = coker f = N/im f.

It is routine to check that ker f is a submodule of M and that im f is a
submodule of N.

Theorem 2.11 (First Isomorphism Theorem). If f: M — N isan R-map
of left R-modules, then there is an R-isomorphism
¢: M/ker f — im f

given by
¢:m+ker f— f(m).
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Proof. If we view M and N only as abelian groups, then the first isomor-
phism theorem for groups says that ¢: M/ker f — im f is a well-defined

M ! N
natJ/ \ Tinc

M/kerf—(p—>imf

isomorphism of abelian groups. But ¢ is an R-map: if r € Rand m € M,
then o(r(m + N)) = ¢(rm + N) = f(rm); since f is an R-map, however,
frm)=rf(m) =re(m+ N), as desired. e

The second and third isomorphism theorems are corollaries of the first.

Theorem 2.12 (Second Isomorphism Theorem). If S and T are submod-
ules of a left R-module M, then there is an R-isomorphism

S/(SNT)— (S+T)/T.

Proof. Ifm: M — M/T is the natural map, then kerm = T; define f =
w|S,sothat f: § — M/T. Now

kerf=SNT and imf=(S+T7T)/T,

for (S + T)/T consists of all those cosets in M /T having a representative
in S. The first isomorphism theorem now applies. e

Definition. If 7 C § € M is a tower of submodules of a left R-module M,
then enlargement of coset ¢: M/T — M/S is defined by

em+T—m+S

(e is well-defined, for if m +T = m’ + T, thenm —m’ € T C S and
m+S=m+S9).

Theorem 2.13 (Third Isomorphism Theorem). [fT C S C M is a tower
of submodules of a left R-module M, then enlargement of coset e: M/T —
M /S induces an R-isomorphism

M/T)/(S/T)— M/S.
Proof. The reader may check thatkere = §/7T and ime = M/S, so that the
first isomorphism theorem applies at once. e

If f: M — N isamap of left R-modules and § € N, then the reader may
check that f=1(S) = {m € M: f(m) € S} is a submodule of M containing
S0} =Ker f.
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Theorem 2.14 (Correspondence Theorem). [If T is a submodule of a left
R-module M, then ¢ : S +— S/T is a bijection:

@ {intermediate submodules T < S € M} — {submodules of M/ T}.
Moreover, T € S C S in M ifand only if S/T € §'/T in M/T.

Proof.  Since every module is an additive abelian group, every submodule
is a subgroup, and so the usual correspondence theorem for groups shows
that ¢ is an injection that preserves inclusions: S € S’ in M if and only if
S/T € S'/T in M/T. Moreover, ¢ is surjective: if S* € M/ T, then there
is a unique submodule S O T with $* = S/T. The remainder of this proof
is a repetition of the usual proof for groups, checking only that images and
inverse images of submodules are submodules. e

The correspondence theorem is usually invoked tacitly: a submodule S*
of M/T is equal to S* = S/ T for some unique intermediate submodule S.
Here is a ring-theoretic version.

Theorem 2.15 (Correspondence Theorem for Rings). If [ is a two-sided
ideal of a ring R, then ¢: J +— J/I is a bijection:

@ {intermediate left ideals I € J C R} — {left ideals of R/I}.
Moreover, I € J C J'inRifandonlyif J/I C J'/I in R/I.
Proof. The reader may supply a variant of the proof of Theorem 2.14. e

Proposition 2.16. A left R-module M is cyclic if and only if M = R/ for
some left ideal 1.
Proof. If M is cyclic, then M = (m) for some m € M. Define f: R - M
by f(r) = rm. Now f is surjective, since M is cyclic, and its kernel is a
submodule of R; that is, ker f is a left ideal /. The first isomorphism theorem
gives R/1 = M.

Conversely, R/ is cyclic with generatorm =1+ 1. e

Definition. A left R-module M is simple (or irreducible) it M # {0} and M
has no proper nonzero submodules; that is, {0} and M are the only submodules
of M.

Corollary 2.17. A left R-module M is simple if and only if M = R /I, where
1 is a maximal left ideal.

Proof. This follows from the correspondence theorem. e

For example, an abelian group G is simple if and only if G is cyclic of
order p for some prime p. The existence of maximal left ideals guarantees
the existence of simple modules.
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Definition. A finite or infinite sequence of R-maps and left R-modules

..._>Mn+1fn_+;Mni>Mn_l_)...

is called an exact sequence? if im f,+, = ker f, for all n.

Observe that there is no need to label arrows> 0 —f> Aor B % 0: in either
case, there is a unique map, namely, f: 0 — O or the constant homomorphism
g(b) =0 for all b € B. Here are some simple consequences of a sequence of
homomorphisms being exact.

Proposition 2.18.
(1) A sequence 0 — A —f> B is exact if and only if f is injective.
(i1) A sequence B £ C — 0is exact if and only if g is surjective.

(iii) A sequence 0 — A LY B — 0 is exact if and only if h is an isomor-
phism.

Proof.

(i) The image of 0 — A is {0}, so that exactness gives ker f = {0}, and so
f is injective. Conversely, given f: A — B, there is an exact sequence

ker f 5 A i> B, where i is the inclusion. If f is injective, then
ker f = {0}.

(i1) The kernel of C — 0 is C, so that exactness gives img = C, and so g
is surjective. Conversely, given g: B — C, there is an exact sequence

B c L /im g, where 7 is the natural map. If g is surjective,
then C =im g and C/im g = {0}.

(iii) Part (i) shows that £ is injective if and only if 0 — A —h> B is exact,

and part (ii) shows that 4 is surjective if and only if A A B - 0
is exact. Therefore, & is an isomorphism if and only if the sequence

0—>A—h>B—>0isexact. °

2This terminology comes from Advanced Calculus, where a differential form o is
called closed if dw = 0 and is called exact if o = dh for some function 4. The term
exact sequence was coined by the algebraic topologist W. Hurewicz. It is interesting to
look at the wonderful book by Hurewicz and Wallman, Dimension Theory, which was
written just before this coinage. Many results there would have been much simpler to state
had the term exact sequence been available.

3We usually write O instead of {0} in sequences and diagrams.
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Definition. A short exact sequence is an exact sequence of the form

0>ALBECoo

We also call this short exact sequence an extension of A by C.

Some authors call this an extension of C by A; some authors say that the
middle module B is an extension.

The next proposition restates the first and third isomorphism theorems in
terms of exact sequences.

Proposition 2.19.

G Ifo—- A —f> B % C — 0isa short exact sequence, then

AZimf and B/imf=C.

(1) If T € S C M is atower of submodules, then there is an exact sequence

0—-S/T—->M/S— M/T — 0.

Proof.

(i) Since f is injective, changing its target gives an isomorphism A —
im f. The first isomorphism theorem gives B/ ker g = im g. By exact-
ness, however, ker g = im f and im g = C; therefore, B/im f = C.

(ii) This is just a restatement of the third isomorphism theorem. Define
f:S/T — M/T to be the inclusion and g: M/T — M/S to be
enlargement of coset: g: m + T +— m + S. As in the proof of Theo-
rem 2.13, g is surjective, and kerg = S/T =im f. e

In the special case when A is a submodule of B and f: A — B is the

inclusion, then exactness of 0 — A —f> B5Cc—o0 gives B/A = C.

The familiar notions of direct sum of vector spaces and direct sum of
abelian groups extend to modules. Recall that if S and T are abelian groups,
then their external direct sum SHT is the abelian group whose underlying set
is the cartesian product and whose binary operation is pointwise addition. If S
and T are subgroups of an abelian group such that S+7 = G and SNT = {0},
then G = S @ T is their internal direct sum. Both versions give isomorphic
abelian groups. The external-internal viewpoints persist for modules as well.
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Definition. If S and T are left R-modules, where R is a ring, then their ex-
ternal direct sum, denoted by SH T, is the cartesian product with coordinate-
wise operations:
(s, 0)+ 6" 1) =6+s 141,
r(s,t) = (rs,rt),

where s, s’ € S,t,t' € T,and r € R.

Proposition 2.20. The following statements are equivalent for left R-modules
M, S, and T.

i) SBET =M.
(i1) There exist injective R-mapsi: S — M and j: T — M such that
M =imi+imj and imiNimj = {0}.

(ii1) There exist R-maps i: S — M and j: T — M such that, for every
m € M, there are unique s € S andt € T withm = is + jt.

(iv) There are R-mapsi: S — M, j: T — M, called projections, and
R-maps p: M — S, g: M — T, called injections, such that

pi=1ls, qj=1r, pj=0, qi=0, and ip+jq=1py.

v) Themap - M — SHBT, given by m — (pm, gm), is an isomorphism.

Remark. The equations pi = lg and ¢j = 17 show that the maps i and j
must be injective (so thatimi = S and im j = T') and the maps p and ¢ must
be surjective. <«

Proof.

(1) = (i1). Letp: SHT — M be an isomorphism. Defineo: S — SHT
byst— (s,0)andt: T — SHT byt +— (0,7). Clearly, o and t
are injective R-maps, and so their composites i = go: S — M and
Jj =@t: T — M are also injections.

If m € M, then ¢ surjective implies that there exist s € Sandt € T
with
m=q@(s,t) =¢(s,0)+¢0,7) =is + jt € imi + im j.

Finally, if x € imi Nim j, then x = o (s) = ¢(s,0) and x = pt(t) =
(0, ). Since ¢ is injective, (s,0) = (0,¢), sothat s = 0 and x =
o(s,0) =0.
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(i) = (iii). Since M = imi + im j, each m € M has an expression m =
is+ jt withs € Sandt € T, so that only uniqueness need be proved.
If alsom = is’ + jt/,theni(s —s') = j(f’ — 1) € imi Nim j = {0}.
Therefore, i(s —s’) = 0and j(r —t’) = 0. Since i and j are injections,
wehaves = s’ andt = 1.

(ili) = (@v). If m € M, then there are unique s € Sandt € T withm =
is + jt. The functions p and ¢, given by p(m) = s and g(m) = t,
are thus well-defined. It is routine to check that p and ¢ are R-maps
and that the first four equations in the statement hold (they follow from
the definitions of p and ¢). For the last equation, if m € M, then
m =1is+ jt,andip(m) + jg(m) =is + jt = m.

(iv) = (v). Define p: SHT — M by ¢(s,t) =is + jt. Itis easy to check
that ¢ is an R-map. Now ¢ is surjective: if m € M, thenip + jg = 1y
gives m = ipm + jgqm = @(pm,qm). To see that i is injective,
suppose that ¢(s, t) = 0; thatis, is = —jt. Then s = pis = —pjt =0
and —t = —gqjt = gis = 0. Therefore, ¢ is an isomorphism, and its
inverse is m +— (pm, gm).

(v) = (1). Obvious. e

Corollary 2.21. IfT: gMod — Ab is an additive functor of either vari-
ance, then
T(AHB)=ZT(A)HT(B).

In particular, if T is covariant, then x — (T (p)x, T (q)x) is an isomorphism,
where p: ABBB — Aand qg: AB B — B are the projections.

Proof. By Proposition 2.7, an additive functor preserves the equations in
Proposition 2.20(iv), and the displayed isomorphism is that given in the proof
of (iv) = (i) of the proposition. e

Internal direct sum is the most important instance of a module isomorphic
to a direct sum.

Definition. If S and T are submodules of a left R-module M, then M is
their internal direct sum if each m € M has a unique expression of the form
m =s +1t,wheres € § and r € T. We denote an internal direct sum by

M=SoT.

Notice that we use equality here and not isomorphism.

Here are restatements of Proposition 2.20 and Corollary 2.21 for internal
direct sums.
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Corollary 2.22.

(1) Let M be a left R-module having submodules S and T. Then M = S®T
ifandonly if S+ T =M and SNT ={0}. Thus, S®&T = SHT.

(i) If T: kMod — Ab is an additive functor of either variance, then
T(A® B) = T(A) & T(B). In particular, if T is covariant and
x € T(A® B), then y: x — (T(p)x,T(q)x) is an isomorphism,
where p: A®@ B — Aandq: A @ B — B are the projections.

Proof. This follows at once from the equivalence of parts (ii) and (iii) of
Proposition 2.20 by taking i and j to be inclusions. The second statement
follows from Corollary 2.21. e

We now forsake the notation S H T, and we write as the mathematical
world writes: either version of direct sum is denoted by S @ T'.

Definition. A submodule S of a left R-module M is a direct summand of M
if there exists a submodule 7 of M with M = S @& T. The submodule T is
called a complement of S.

Complements of a direct summand S of M are not unique. For example,
let V be a two-dimensional vector space over a field k, and let a, b be a basis.
For any o € k, the one-dimensional subspace («a + b) is a complement of
(a). On the other hand, all complements of S are isomorphic (to M/S).

The next corollary relates direct summands to a special type of homomor-
phism.

Definition. A submodule S of a left R-module M is a retract of M if there
exists an R-map p: M — S, called a retraction, with p(s) = s forall s € S.

Equivalently, p is a retraction if and only if pi = 1g, wherei: S — M is
the inclusion.

Corollary 2.23. A submodule S of a left R-module M is a direct summand
if and only if there exists a retraction p: M — S.

Proof. In this case, we let i : § — M be the inclusion. We show that M =
S@®T,where T =kerp. If m € M, thenm = (m — pm) + pm. Plainly,
pm € im p = S. On the other hand, p(m — pm) = pm — ppm = 0, because
pm € S and so ppm = pm. Therefore, M = S + T.

If m € §, then pm = m; if m € T = ker p, then pm = 0. Hence, if
m e SNT,thenm = 0. Therefore, SNT ={0},and M =S P T.

For the converse, if M = S@T, then each m € M has a unique expression
of the formm = s + ¢, where s € S and ¢ € T, and it is easy to check that
p: M — S,definedby p: s+t +> s,isaretraction M — S. e
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Corollary 2.24.

Q) fM=S®Tand SCNCM,then N=SH(NNT).

) fM=S®Tand S C S, then M)S'=S/S' & (T +5")/S.
Proof.

(i) Let p: M — S be the retraction s+¢ +> s. Since S C N, the restriction
p|N: N — S is aretraction with ker(p|N) = NNT.

(ii) The map p: M/S" — S/S’ is aretraction withkerp =T + S’. o

The direct sum constructions can be extended to finitely many submod-
ules. There are external and internal versions, and we temporarily revive the
H notation.

Definition. Given left R-modules Si, ..., S,, their (external) direct sum
S18- - -BS, is the left R-module whose underlying set is the cartesian product
and whose operations are

(1o evvvsn) (s oeeysy) = (51458, .00y S0+ 5,

r(st,...,8,) = (rst,...,rsy).

Let M be aleft R-module, and let Sy, ..., S, be submodules of M. Define
M to be their (internal) direct sum

M=§5®& &5,

if each m € M has a unique expression of the form m = s; + - - - + 55, where
s; € S;foralli =1, ..., n. We also write the internal direct sum as 69?:1 S;.

The reader can prove that both external and internal versions, when the
latter is defined, are isomorphic: S1H---HS, =S, & --- & S,. We shall no
longer use the adjectives external and internal, and we shall no longer use the
H notation.

If Sq, ..., S, are submodules of a left R-module M, let

Si+-+ S

be the submodule generated by the S;; that is, S| + - -- + S, is the set of all
elements m € M having a (not necessarily unique) expression of the form
m=s;+---+s, withs; € §; for all i. Whenis S; + -+ §, equal to
their direct sum? A common mistake is to say that it suffices to assume that
S;NS; = {0} foralli # j, but the next example shows that this is not enough.
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Example 2.25. Let V be a two-dimensional vector space over a field K, and
let x, y be a basis. The vector space V is a k-module, and it is a direct sum:
V = (x) & (y), where (x) is the one-dimensional subspace spanned by x.
Now

(x+y)N{x) ={0} = (x +y) Ny,

but we do not have V = (x + y) @ (x) @ (y), because 0 has two expressions:
0=0+4+0+0 and O=(x+y)—x—y. <«

Proposition 2.26. Let M = S| + --- + S, where the S; are submodules.
Then M = S1 @ --- @ S, if and only if, for each i,

SiN(S1 4+ 8+ 4 S,) = {0},
where :S‘\, means that the term S; is omitted from the sum.

Proof. IfM=S81® - ®S,andx € §;N(Sy+---+S5;+---+5,), thenx =
si € Sjand s5; = Zj# sj, where s; € §;. Unless all the s; = 0, the element
0 has two distinct expressions: 0 = —s; + Z#i sjand0=0+0+---+0.
Therefore, all s; =0and x =s; = 0.

We prove the converse by induction on n > 2. The base step is Corol-
lary 2.22(i). For the inductive step, define T = S} + --- + S;, so that
M =T S,4+1. If a € M, then a has a unique expression of the form
a=t+sy+1,wheret € T and 5,41 € S,+1 (by the base step). But the induc-
tive hypothesis says that t has a unique expression of the form ¢ = s+ - -+sy,,
where s; € S; forall i < n, as desired. o

Example 2.27. If V is an n-dimensional vector space over a field k and
vi,...,V, is a basis, then V = (v;) & --- & (v,), for each vector v € V has
a unique expression v = Y «;v; with ;v; € (v;). Thus, V is a direct sum of
n one-dimensional vector spaces if and only if dim(V) =n. <

Direct sums can be described in terms of exact sequences.

Definition. A short exact sequence

0— A LN B2 c—o0
is split if there exists amap j: C — B with pj = 1¢.

Note that jp is a retraction B — im j.

Proposition 2.28. If an exact sequence

0>A5BR2Cco0

is split, then B= A @ C.



2.1 MODULES 53

Remark. See Exercise 2.8 on page 65. <«

Proof. We show that B = imi @ im j, where j: C — B satisfies pj = I¢.
Ifb € B, then pb € C and b— jpb € ker p, for p(b— jpb) = pb—pj(pb) =
0 because pj = 1c¢. By exactness, there is a € A withia = b — jpb. It
follows that B = imi + im j. It remains to prove imi Nim j = {0}. If
ia = x = jc, then px = pia = 0, because pi = 0, whereas px = pjc = c,
because pj = 1¢. Therefore, x = jc =0,andso B=ZA G C. e

We shall see, in Example 2.29, that the converse of Proposition 2.28 is not
true.

There are (at least) two ways to extend the notion of direct sum of modules
from finitely many summands to infinitely many summands.

Definition. Let R be a ring and let (A;);c; be an indexed family of left R-
modules. The direct product [];_; A; is the cartesian product [i.e., the set of
all I-tuples (a;) whose ith coordinate a; lies in A; for all i] with coordinate-
wise addition and scalar multiplication:

(@) + (b)) = (a; +b;) and r(a;) = (ra;),

where r € R and a;, b; € A; for all i. In particular, if all A; are equal, say,
A; = Aforalli € I, then we may write A’ instead of [, ., A;.
The direct sum, denoted by @, ; A;, is the submodule of [ |
sisting of all (a;) having only finitely many nonzero coordinates.
If B = [];c; Ai, then the jth projection (for j € I)isthe map p;: B —
A defined by (a;) +> a;. The jth injection (for j € I) is the map a;
(ej) € B,wheree¢; =0ifi # jande; =aj.

i Ai con-

We can be more precise. An I-tuple is a function ¢: I — [J; A; with
@(i) € A; forall i € I. Thus, the direct product consists of all /-tuples,
while the direct sum consists of all those 7-tuples having finite support, where
supp(p) = {i € I : ¢(i) # {0}}. Another way to say that ¢ has finite support
is to say that almost all the coordinates of (a;) are zero; that is, only finitely
many @; are nonzero.

If a; € A;, let pja; be the I-tuple in [ [; A; whose ith coordinate is ¢; and
whose other coordinates are 0. Recall that two functions f, g: X — Y are
equal if and only if f(x) = g(x) for all x € X; thus, two vectors are equal if
and only if they have the same coordinates. It follows that each m € €, .; A;
has a unique expression of the form m = Zi c1 Miaj, where a; € A; and
almost all ¢; = 0.

Note that if the index set [ is finite, then ]_[l-el A = @ie] A;. On the
other hand, when / is infinite and infinitely many A; # 0, then the direct
sum is a proper submodule of the direct product. An infinite direct product
is almost never isomorphic to an infinite direct sum. For example, if k is a
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field and A; = k for all i € N, then both [] A; and € A; are vector spaces
over k; the product has uncountable dimension while the sum has countable
dimension.

Example 2.29. There are exact sequences 0 - S — S® T — T — 0 that
are not split.

Let A = (a) and B = (b) be cyclic groups of order 2 and 4, respectively.
Ifi: A— Bisdefinedbyi(a) =2band p: B — A is defined by p(b) = a,

then) — A L B % A — 0is anexact sequence that is not split (because
Iy # 1, & ). By Exercise 2.5 on page 65, for any abelian group M, there is
an exact sequence

0>A->BoM-LsAeM—o0, (1)

where i’(a) = (ia,0) and p'(b,m) = (pb, m), and this sequence does not
split either. If we choose M to be the direct sum of infinitely many copies of
A® B,then A® M = M = B & M. The middle group in extension (1) is
now isomorphic to the direct sum of the two outer groups. <«

The next theorem says that covariant Hom functors preserve direct prod-
ucts; the following theorem says that contravariant Hom functors convert di-
rect sums to direct products.

Theorem 2.30. Let R be a ring, let A be a left R-module, and let (B;);c be
a family of left R-modules.

(1) There is a Z(R)-isomorphism
Q: HomR<A, 1_[ Bi> — HHomR(A, B;)
iel iel

with ¢: f +— (pif), where the p; are the projections of the direct

product [ ] <1 Bi. If R is commutative, then ¢ is an R-isomorphism.

(ii) The isomorphism ¢ is natural: if (C;) jey is a family of left R-modules
and, for each i € I, there exist j € J and an R-map o;;: B — Cj,
then there is a commutative diagram

Homg (A, [1;¢; Bi) — Homg (A, nje] Cj)

wi irp

[1;c; Homg(A, Bj)) —Z=[];c, Homg(A, C)),

where o : [[; Bi — ]_[j C; is given by (b;) — (0jb;), and 5 : (g;)
(0ij &i)-
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Proof.
(i) To see that ¢ is surjective, let (f;) € [[Homg (A, B;);then fi: A — B;
for every i.
B;
2N
[Bi<— ;-4

Define an R-map 6: A — [[B; by 6(a) = (fi(a)); it is easy to see
that ¢ (0) = (p;f) = (fi), and so ¢ is surjective.

To see that ¢ is injective, let f, f € Homg(A, [| B;). Now ifa € A,
then f(a) = (b;) and (p; f)(a) = b;; similarly, f'(a) = (b)) and

(pi f)(a) = b}. If o(f) = o(f"), then (p; f) = (p; f'), and so p; f =
pif' forall i. Thus, forall i and all « € A, we have b; = b;; that is,

f@a) = f'(a),and f = f'.
To see that ¢ is a Z(R)-map, note, for each i and each r € Z(R), that
pirf = rp; f; therefore,

p:rf = (pirf) = (pif) =rpif) =re(f).

(ii) Going clockwise, f + o (f) = of + (qjof), where g; is the jth
projection [ j C; — Cj; going counterclockwise, f — (p;f)
(q;0 f). To see that these are equal, evaluate each at @ € A. Note that if
fa= (b)) € Hi B;, then p; fa = b;. Hence, qu'fa = cr,'jfa = O'ijbi.
On the other hand, [quff]a = q]'((Tijf)a = qj(Oijbi) = Gijb,'. °

Theorem 2.31. Let R be a ring, let B be a left R-module, and let (A;);c be
a family of left R-modules.

(1) There is a Z(R)-isomorphism
v HomR(@ A, B) — HHomR(Aia B),
iel iel
with r: f — (fa;), where the «; are the injections into the direct sum
D,c; Ai. If R is commutative, then ¢ is an R-isomorphism.

(ii) The isomorphism r is natural: if (D) jey is a family of left R-modules
and, for each j € J, there existi € I and an R-map tj;: D; — A;,
then there is a commutative diagram

HomR(@jEJ Dj, B) LA HomR(®i€1 Ai, B)

v v

]_[jEJ HOII]R(Dj, B) <?— Hie] HomR(Ai, B),
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where T : ]_[j D; — []; Aiisgivenby (dj) — (tjid}), andT: (h;) —
(hjTji).

Proof. This proof, similar to that of Theorem 2.30, is left to the reader. e

There are examples showing that there are no other isomorphisms involv-
ing Hom, €, and [ (see Exercise 2.25 on page 68).

Here is a new proof of Corollary 2.22(ii).

Corollary 2.32. IfA, A, B, and B’ are left R-modules, then there are Z(R)-
isomorphisms

Hompz (A, B ® B') = Homg(A, B) ® Homg(A, B)

and
Homp(A @ A, B) = Homg (A, B) ® Homg(A', B).

If R is commutative, these are R-isomorphisms.

Proof. When the index set is finite, the direct sum and the direct product of
modules are equal. e

The simplest modules are free modules.

Definition. A left R-module F is a free left R-module if F is isomorphic to
a direct sum of copies of R: that is, there is a (possibly infinite) index set B
with F = @, 5 Ry, where R, = (b) = R for all b € B. We call B a basis
of F.

By the definition of direct sum, each m € F has a unique expression of

the form
m= Zrbb,
beB

where r, € R and almost all r;, = 0. It follows that F = (B).

A free Z-module is called a free abelian group. Every ring R, when
considered as a left module over itself, is itself a free R-module.

In the first chapter, we defined the singular chain groups S, (X) of a topo-
logical space X as the free abelian group with basis all singular n-simplexes
in X. We now prove that such huge abelian groups exist.

Proposition 2.33. Let R be a ring. Given any set B, there exists a free left
R-module F with basis B.
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Proof. The set of all functions R® = {¢: B — R} is a left R-module
where, for all b € B and r € R, we define ¢ + ¥ : b — ¢(b) + ¥ (b) and
ro: b — rle(b)]. In vector notation, a function ¢ is written as the B-tuple
whose bth coordinate is ¢(b). In particular, the function u, defined by

, 1 ifd =b,
m®Y=00 ity b,

is the B-tuple whose bth coordinate is 1 and whose other coordinates are all 0.

If we denote 11, by b, then R is the direct product [1,c5(b). Now R = (b)

via the map r +— rup, and so the submodule F of R? generated by B is a

direct sum of copies of R; that is, F = @(b) is a free left R-module with

basis B. e

A basis of a free module has a strong resemblance to a basis of a vector
space. If k is a field, then every vector space V over k has a basis, in the sense
of Linear Algebra. It is easy to see that the two notions of basis coincide in this
case (see Example 2.27); moreover, a vector space V is a finitely generated
free k-module if and only if it is finite-dimensional. The theorem of Linear
Algebra that linear transformations are described by matrices can be rephrased
to say that if vy, ..., v, is a basis of a vector space V and if wy, ..., w, isa
list (possibly with repetitions) of vectors in a vector space W, then there exists
a unique linear transformation 7: V. — W with T (v;) = w; for all i. Since
T has the formula

T(ajvy + -+ ayv,) =aiwy + -+ + a,wy,

one says that T arises by extending by linearity. This idea can be used for free
R-modules.

Proposition 2.34 (Extending by Linearity). Let R be a ring and let F
be the free left R-module with basis X. If M is any left R-module and if
S X — M is any function, then there exists a unique R-map f: F — M
with fiu = f, where u: X — F is the inclusion; that is, f(x) = f(x) for
all x € X, so that f extends f.

f
7% NG

—
/

B

N
R M

/
Proof. Every element v € F has a unique expression of the form

v = E ryX,

xeX
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where r, €R and almost all r, = 0; it follows that there is a well—deﬁned
function f: F — M given by f(v) = )  .x7xf(x). Obviously, f ex-
tends f. IfseRthensv—Zsrx;lfv erthenv—{—v:
> (ry +ry)x. The formula for f shows that it is an R-map. Finally, f is the
unique R-map extending f: since F' = (X), Exercise 2.3 on page 64 shows
that two R-maps agreeing on a generating set must be equal. e

Arbitrary modules can be described in terms of free modules.

Theorem 2.35. Every left R-module M is a quotient of a free left R-module
F. Moreover, M is finitely generated if and only if F can be chosen to be
finitely generated.

Proof. Choose a generating set X of M, and let F be the free module with
basis {uy : x € X}. By Proposition 2.34, there is an R-map g: FF — M with
g(uy) = x forall x € X. Now g is a surjection, for im g is a submodule of M
containing X, and so F/kerg = M.

If M is finitely generated, then there is a finite generating set X, and the
free module F just constructed is finitely generated. The converse is obvious,
for any image of a finitely generated module is itself finitely generated e

If F is a free left R-module, then we would like to know that there is an
analog of dimension; that is, the number of elements in a basis of F is an
invariant. The next proposition shows that this is so when R is commutative.
However, there are noncommutative rings R for which R = R @ R as left
R-modules; that is, R is a free left R-module having bases of different sizes.

Example 2.36. Let V be an infinite-dimensional vector space over a field
k, so that there is a k-isomorphism 6: V. — V @ V. Define projections
p,q: V®V - Vbyp: (v,w)r— vandg: (v, w) — w. Let R = End (V)
be the ring of all k-linear transformations f: V — V (with composition as
multiplication). Now apply Homy (V, [J) to obtain a k-isomorphism

0s: Homg(V,V) - Hom(V,V @& V),
namely, 0,: g — 0,(g) = 0g for g € Homg(V, V). Let
Y : Homg(V,V & V) - Homg(V, V) @ Homg(V, V)

be given by f — (pf, qf) [ is the isomorphism of Corollary 2.22(ii) with
T = Homg(V,)]. Consider the k-isomorphism ¥6,: R — R & R. As
usual, R is a right R-module via right multiplication, and R @ R is a right
R-module via (f, g)h = (fh, gh) for f, g,h € R. We show that /6, is an
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R-isomorphism. If f, i € R, then

(YO0 (fh) = (O fh])
=Y (Ofh)
= (pOfh,qbfh)
= (pOf,q0/)h
= (Y0.)(f)h.
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Therefore, /0, is an R-isomorphism, R = R & R as right R-modules. (Of
course, replacing R by R°P gives a similar example for left modules; this

amounts to writing composites fg as gf.) <

Proposition 2.37. Let R be a nonzero commutative ring.

(1) Any two bases of a free R-module F have the same cardinality.

(ii) Free R-modules F and F' are isomorphic if and only if there are bases

of each having the same cardinality.

(iii) If m and n are natural numbers, then R™ = R" if and only if m = n.

Proof.

(i) Choose a maximal ideal / in R (which exists, by Zorn’s lemma). If
X is a basis of the free R-module F, then Exercise 2.12 on page 66
shows that the set of cosets {v + [ F : v € X} is a basis of the vector
space F/IF over the field R/I. If Y is another basis of F, then the
same argument gives {u + I F : u € Y} a basis of F/I F. But any two
bases of a vector space have the same size (which is the dimension of

the space), and so X and Y have the same cardinality.

(ii) Let X be a basis of F, let X’ be a basis of F/,andlety: X — X' be a
bijection (which exists by hypothesis). Composing y with the inclusion
X' — F’, we may assume that y : X — F’. By Proposition 2.34, there
is a unique R-map ¢: F — F’ extending y. Similarly, we may regard

y~!: X’ — X asafunction X' — F, and there is aunique ¥ : F' — F
extending y ~!. Finally, both ¥/¢ and 17 extend 1y, so that /¢ = 1p.

Similarly, ¢ = 15/, and so ¢: F — F' is an isomorphism.

Conversely, suppose that ¢ : F — F’ is an isomorphism. If {v; : i € I}
is a basis of F, then it is easy to see that {¢p(v;) : i € I} is a basis of F’.

But any two bases of the free module F’ have the same cardinality, by

part (i). Hence, bases of F and of F’ have the same cardinality.

(iii) If m = n, then R™ = R" is obvious. Conversely, if R = R", part (ii)

applies. e
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Definition. A ring R has IBN (invariant basis number) if R™ = R" as left
R-modules implies m = n. If R has IBN, then the number of elements in
a basis of a free left R-module F is called the rank of F and is denoted by
rank(F).

If aring R has IBN, then it is also true that R™ = R" as right R-modules
implies m = n; see Exercise 2.37 on page 97. If R has IBN and F is a
finitely generated free left R-module, then every two bases of F have the
same number of elements, for if xq, ..., x, is a basis of F, then F = R".
Thus, rank(F’) is well-defined for rings with IBN. Free modules having an
infinite basis are considered in Exercise 2.26 on page 69.

Proposition 2.37(i) shows that every nonzero commutative ring R has
IBN. Division rings have IBN: if A is a division ring and F is a finitely gen-
erated free left A-module, then any two bases of F have the same number of
elements (see Rotman, Advanced Modern Algebra, p. 537). The proof above
that commutative rings have IBN generalizes to any noncommutative ring R
having a two-sided ideal / for which R/ is a division ring [every local ring is
such a ring (see Proposition 4.56(iii)]. We shall see, in Theorem 3.24, that all
left noetherian rings also have IBN. On the other hand, Example 2.36 shows
that if R = Endy(V), where V is an infinite-dimensional vector space over a
field k, then R does not have IBN.

Corollary 2.22(ii) says that the Hom functors xkMod — Ab preserve di-
rect sums of modules: Homg(X, A @ C) = Hompg(X, A) @ Homg (X, C).
If we regard such a direct sum as a split short exact sequence, then we may

rephrase the corollary by saying that if 0 — A S BACc>o0isa split
short exact sequence, then so is

0 — Hompg(X. A) —*> Homg(X, B) > Homg (X, C) — 0.

This leads us to a more general question: if 0 — A S BEC—o0is any
short exact sequence, not necessarily split, is

0 — Homg(X, A) — Homg(X, B) %> Homg(X, C) — 0

also an exact sequence? Here is the answer (there is no misprint in the state-
ment of the theorem: “— 0” should not appear at the end of the sequences,
and we shall discuss this point after the proof).

Theorem 2.38 (Left Exactness). If0 — A —l> B % Cis an exact se-
quence of left R-modules, and if X is a left R-module, then there is an exact
sequence of Z(R)-modules

0 — Homg(X, A) <5 Homg(X, B) &5 Homg(X, C).
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If R is commutative, then the latter sequence is an exact sequence of R-

modules and R-maps.

Proof.  That Hompg (X, A) is a Z(R)-module follows from Proposition 2.4.

(1) keri, = {0}.

If f € keriy, then f: X — A and i,(f) = 0; that is, if(x) =
Oforallx € X. Since i is injective, f(x) = O for all x € X, and
so f=0.

(i) imi. < Ker py.

If g € imi,, then g: X — B and there is some f: X — A with
g=1i.(f)=if.But p,(g) = pg = pif = 0 because exactness of the
original sequence, namely, im7 = ker p, implies pi = 0.

(iii) ker p, C imi,.

If g € ker py,theng: X — B and p,(g) = pg = 0. Hence, pg(x) =0
for all x € X, so that g(x) € ker p = imi. Thus, g(x) = i(a) for some
a € A;since i is injective, this element « is unique. Hence, the function
f: X — A, given by f(x) = a if g(x) = i(a), is well-defined. It is
easy to check that f € Homg (X, A); thatis, f is an R-homomorphism.
Since g(x +x) = g(x) + g(x’) = i(a) +i(a’) = i(a + a’), we have
f&x+x)=a+a = f(x)+ f(x'). A similar argument shows that
frx) =rf(x) forallr € R. But, i,(f) = if and if(x) = i(a) =

g(x) forall x € X; thatis, i,(f) = g,andso g € imi,. e

Example 2.39. Even if the map p: B — C in the original exact sequence
is surjective, the functored sequence need not end with “— 07; that is, the

induced map p,: Homg (X, B) — Hompg (X, C) may fail to be surjective.

The abelian group QQ/Z consists of cosets g +Z for g € Q, and its element
X = % + Z has order 2 (x # 0 and 2x = 0). It follows that Homz (I, Q/Z) #

{0}, for it contains the nonzero homomorphism [1] — % + Z.
Apply the functor Homz (I, 0J) to

0525Q5 Qz o,
where i is the inclusion and p is the natural map. We have just seen that

Homy (I, Q/Z) # {0}.

On the other hand, Homy (I, Q) = {0} because Q has no (nonzero)
elements of finite order. Therefore, the induced map p,: Homgz(Ip, Q) —

Homgyz (Io, Q/Z) cannot be surjective. <
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Definition. A covariant functor 7: gkMod — Ab is called left exact if
exactness of _

0>A5>BAC
implies exactness of abelian groups

0 74) 29 78y X2 1(0).

Thus, Theorem 2.38 shows that the covariant functors Homg (X, [J) are
left exact functors.
There is an analogous result for contravariant Hom functors.

Theorem 2.40 (Left Exactness). If
ALBEh o

is an exact sequence of left R-modules, and if Y is a left R-module, then there
is an exact sequence of Z(R)-modules

0 — Homg(C, ¥) %> Homg(B. Y) > Homg(A, Y).
If R is commutative, then the latter sequence is an exact sequence of R-
modules and R-maps.
Proof.  That Hompg (A, Y) is a Z(R)-module follows from Proposition 2.5.
(i) ker p* = {0}.

Ifh € ker p*,thenh: C — Y and0 = p*(h) = hp. Thus, h(p(b)) =0
for all b € B, so that h(c) = 0 for all ¢ € im p. Since p is surjective,
imp=C,and h = 0.

(ii) im p* C keri*.
If g € Homg(C, Y), then i*p*(g) = (pi)*(g) = 0, because exactness
of the original sequence, namely, imi = ker p, implies pi = 0.

(iii) keri* C im p*.
If g € keri*,then g: B — Y andi*(g) = gi = 0. If c € C, thenc =
p(b) for some b € B, because p is surjective. Define f: C — Y by
f(c) = g(b) if c = p(b). Note that f is well-defined: if p(b) = p(b),
then b — b’ € ker p = imi, so that b — b’ = i(a) for some a € A.
Hence, g(b) — g(b') = g(b — b') = gi(a) = 0, because gi = 0. The
reader may check that f is an R-map. Finally,

P (f)=fp=3s.

because if ¢ = p(b), then g(b) = f(c) = f(p(b)). Therefore, g €
imp*. e
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Example 2.41. Even if the map i: A — B in the original exact sequence
is assumed to be injective, the functored sequence need not end with “— 07;
that is, the induced map i*: Homg(B,Y) — Homg(A, Y) may fail to be
surjective.

We claim that Homz(Q, Z) = {0}. Let f: Q — Z, and let f(a/b) =
m € 7. Foralln > 0,

nf(a/nb) = f(na/nb) = f(a/b) =m.

Thus, m is divisible by every positive integer n [for f(a/nb) € 7], and this
forces m = 0. Therefore, f = 0.
If we apply the functor Homz (L, Z) to the short exact sequence

0525025 Qz o,
where i is the inclusion and p is the natural map, then the induced map
i*: Homy(Q, Z) — Homy(Z, Z)
cannot be surjective, for Homz(Q, Z) = {0} while Homz(Z, Z) # {0} be-

cause it contains 17. <«

Definition. A contravariant functor 7: gkMod — Ab is called left exact if
exactness of _

A5BL Cc—o0
implies exactness of

0— 7)) 28 78y I9 1(a).

Thus, Theorem 2.40 shows that the contravariant functors Hompg ((J, Y)
are left exact functors.*

There is a converse of Theorem 2.40 (a similar statement for covariant
Hom functors is true but not very interesting; see Exercise 2.13 on page 66).

Proposition 2.42. Leti: B — Band p: B — B’ be R-maps, where R is
a ring. If, for every left R-module M,

0 — Homg(B", M) X Hompg (B, M) —— Hompg(B', M)
is an exact sequence of abelian groups, then
B -5 B2 B 0

is an exact sequence of left R-modules.

4These functors are called left exact because the functored sequence has “0 —” on the
left-hand side.
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Proof.
(1) p is surjective.

Let M = B”/im p and let f: B” — B”/im p be the natural map, so
that f € Hom(B”, M). Then p*(f) = fp = 0, so that f = 0, because
p* is injective. Therefore, B”/im p = 0, and p is surjective.

(i) imi C ker p.

Since i* p* = 0, we have 0 = (pi)*. Hence, if M = B” and g = 1p»,
so that ¢ € Hom(B”, M), then 0 = (pi)*g = gpi = pi, and so
imi C ker p.

(iii) ker p C imi.
Now choose M = B/imi and let h: B — M be the natural map, so
that h € Hom(B, M). Clearly, i*h = hi = 0, so that exactness of the
Hom sequence gives an element /' € Homg(B”, M) with p*(h') =
h'p = h. We have imi C ker p, by part (ii); hence, if imi # Ker p,
there is an element b € B with b ¢ imi and b € ker p. Thus, hb # 0
and pb = 0, which gives the contradiction hb = h'pb = 0. e

The single condition that i*: Homg (B, M) — Homg(B’, M) be sur-
jective is much stronger than the hypotheses of Proposition 2.42 (see Exer-
cise 2.20 on page 68).

Exercises

Unless we say otherwise, all modules in these exercises are left R-modules.

2.1 Let R and S be rings, and let ¢ : R — § be a ring homomorphism.
If M is a left S-module, prove that M is also a left R-module if we
define

rm = @(rym,

forallr €e Randm € M.
2.2 Give an example of a left R-module M = S@T having a submodule
N suchthat N A (NNS)YDNNT).
*2.3 Let f, g: M — N be R-maps between left R-modules. If M = (X)
and f|X = g|X, prove that f = g.
*2.4 Let (M;);c; be a (possibly infinite) family of left R-modules and,
for each i, let N; be a submodule of M;. Prove that

(@ M,-)/(@ N;) = @(M,-/N,).
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*25 Let 0 - A — B — C — 0 be a short exact sequence of left
R-modules. If M is any left R-module, prove that there are exact

sequences
0O0—>A®PM—>BpPM—>C—0
and
0 A—->BoM-—->CeM-—O.
dn n
*2.6 (i) Let— A,1 hiard A, i> A,_1 — be an exact sequence,

(i)

and letimd, | = K, = kerd,, for all n. Prove that

0— K, - A, — K,_1 — 0
is an exact sequence for all n, where i, is the inclusion
and d), is obtained from d,, by changing its target. We say
that the original sequence has been factored into these short
exact sequences.
Let

—)Ali>Aoﬂ>K—>O

and
0— K -2% By 2% B —

be exact sequences. Prove that

A a0 28 By L By

is an exact sequence. We say that the original two se-
quences have been spliced to form the new exact sequence.

*2.7 Use left exactness of Hom to prove that if G is an abelian group,
then Homyz (I, G) = G[n], where G[n] = {g € G : ng = 0}.

*2.8 (i)

(ii)

Prove that a short exact sequence in gMod,

0>A5BR oo,

splits if and only if there exists g: B — A with gi = 14.
(Note that ¢ is a retraction B — imi.)

i P . e
A sequence A — B — C in Groups is exact if imi =
ker p; an exact sequence

145 BRco

in Groups is split if there is a homomorphism j: C — B
with pj = 1¢c. Prove that 1 - A3 — S3 —> I — 1
is a split exact sequence. In contrast to part (i), show, in
a split exact sequence in Groups, that there may not be a
homomorphism g: B — A with gi = 14.
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*2.9 (i) Letup,...,v, be a basis of a vector space V over a field
k. Let vi: V — k be the evaluation V* — k defined by
v = (0, v;) (see Example 1.16). Prove that v}, ..., v, is
a basis of V* (it is called the dual basis of vy, ..., v,).

(i)

Hint. Use Corollary 2.22(ii) and Example 2.27.

Let f: V — V be a linear transformation, and let A be
the matrix of f with respect to a basis vy, ..., v, of V; that
is, the ith column of A consists of the coordinates of f (v;)
with respect to the given basis vy, ..., v,. Prove that the
matrix of the induced map f*: V* — V* with respect to
the dual basis is the transpose A’ of A.

*2.10 If X is a subset of a left R-module M, prove that (X), the submodule
of M generated by X, is equal to ) S, where the intersection ranges
over all those submodules S of M that contain X.

*2.11 Prove that if f: M — N is an R-map and K is a submodule of
a left R-module M with K < ker f, then f induces an R-map
f:M/K —> Nby f:m+K +— f(m).

*2.12 i)

(ii)

Let R be a commutative ring and let J be an ideal in R.
Recall Example 2.8(iv): if M is an R-module, then J M is
a submodule of M. Prove that M/JM is an R/J-module
if we define scalar multiplication:

r+J)Ym+JM)=rm+ JM.

Conclude that if JM = {0}, then M itself is an R/J-
module. In particular, if J is a maximal ideal in R and
JM = {0}, then M is a vector space over R/J.

Let / be a maximal ideal in a commutative ring R. If X is
a basis of a free R-module F, prove that F'/I F is a vector
space over R/ and that {cosets x + I F' : x € X} is a basis.

*#2.13 Let M be a left R-module.

()

(i)

Prove that the map ¢j;: Homg(R, M) — M, given by
opm: f = f(1),is an R-isomorphism.

Hint. Make the abelian group Hompg (R, M) into a left R-
module by defining rf (for f: R — M and r € R) by
rf:s+ f(sr)foralls € R.

If g: M — N, prove that the following diagram com-
mutes:
oM
Homg(R, M) —— M

. |s

HOH]R(R, N) W)N
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Conclude that ¢ = (@) meobj(rMod) 1S a natural isomor-
phism from Homg (R, 0J) to the identity functor on xkMod.
[Compare with Example 1.16(ii).]

2.14 Let A —f> B-5 Chea sequence of module maps. Prove that gf = 0
if and only if im f C kerg. Give an example of such a sequence
that is not exact.

*2.15 (i) Provethat f: M — N is surjective if and only if coker f =
{0}.
(i) If f: M — N is a map, prove that there is an exact se-
quence

0—>kerf—>M‘—f>N—>cokerf—>O.

*2.16 (i) If0 - M — 0is an exact sequence, prove that M = {0}.

(i) IfA —f> BEC A D is an exact sequence, prove that f

is surjective if and only if % is injective.

(iii) Let A 2 B i> c % D—3> E be exact. If « and §

are isomorphisms, prove that C = {0}.

217 If A i> B -5 C i) D —k> E is exact, prove that there is an

exact sequence

O—>cokerfi>Ci>kerk—>O,

where@: b+ im f +— gband B: ¢ — hc.

*2.18 Let0 — A 5N B % € — 0be a short exact sequence.
(i) Assume that A = (X) and C = (Y). Foreachy € Y,
choose y' € B with p(y") = y. Prove that

B=(i(X)U{y:yeVY}).

(ii) Prove that if both A and C are finitely generated, then B
is finitely generated. More precisely, prove that if A can
be generated by m elements and C can be generated by n
elements, then B can be generated by m + n elements.

*2.19 Let R be aring, let A and B be left R-modules, and let r € Z(R).

(i) If u,: B — B is multiplication by r, prove that the in-
duced map (i, )«: Homg(A, B) — Homg(A, B) is also
multiplication by r.

(ii) If m: A — A is multiplication by r, prove that the in-
duced map (m,)*: Homg(A, B) — Homg(A, B) is also
multiplication by r.
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*2.20

*2.21

*2.22

2.23

*2.24

*2.25

Suppose one assumes, in the hypothesis of Proposition 2.42, that the
induced map i*: Homg(B, M) — Homg(B’, M) is surjective for
every M. Prove that 0 - B’ —> B L. B" > 0isa split short
exact sequence.
If T: Ab — Ab is an additive functor, prove, for every abelian
group G, that the function End(G) — End(T' G), given by f
Tf,is aring homomorphism.
(i) Prove that Homz(Q, C) = {0} for every cyclic group C.
(ii) Let R be a commutative ring. If M is an R-module such
that Homp (M, R/I) = {0} for every nonzero ideal I, prove
that im f C [/ for every R-map f: M — R, where the
intersection is over all nonzero ideals / in R.
(iii) Let R be a domain and suppose that M is an R-module with
Hompg (M, R/I) = {0} for all nonzero ideals I in R. Prove
that Homg (M, R) = {0}.
Hint. Every r € (1), I is nilpotent.
Generalize Proposition 2.26. Let (S;);c; be a family of submod-

ules of a left R-module M. If M = <Ul el Sl-), then the following
conditions are equivalent.

(i) M= @ie[ Si.
(ii) Every a € M has a unique expression of the form a = s;, +
---+s; , where Si; € Sij.
(iii) Si N (U Sj) = {0} foreachi € 1.
(i)  Prove that any family of R-maps (f;: U; — V;);jecs canbe
assembled into an R-map ¢: P j Uj — @j V;, namely,
@ (uj) = (fjuj)).
(ii) Prove that ¢ is an injection if and only if each f; is an
injection.
(i) If Z; = Zforall i, prove that

Homy, (ﬁ Zi, Z) Z l°_°[ Homy(Z;, Z).
i=1

i=1

Hint. A theorem of J. Los and, independently, of E. C.
Zeeman (see Fuchs, Infinite Abelian Groups 11, Section 94)
says that

o o oo
HomZ(l_[ Z.. Z) = P Homz (2. 2) = P z:.
i=1 i=1

i=1
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(ii) Let p be a prime and let B, be a cyclic group of order p”",
where n is a positive integer. If A = @2, By, prove that

Homy (A, é B,,) > éHomk(A, B,).
n=1

n=1

Hint. Prove that Hom(A, A) has an element of infinite or-
der, while every element in @ZO: | Homy (A, B,) has finite
order.

(i) Prove that Homz ([ ],5, In, Q) # [],5, Homz (I, Q).
*#2.26 Let R be aring with IBN.

(i) If R isafree left R-module having an infinite basis, prove
that R @ R = R*™.

(i) Prove that R® % R" for any n € N.

(iii) If X is a set, denote the free left R-module &, .y Rx by
R™X . Let X and Y be sets, and let RX) = RY)_ If X is
infinite, prove that Y is infinite and that | X| = |Y|; that is,
X and Y have the same cardinal.

Hint. Since X is a basis of R®), each u € R has a
unique expression u = ) _y ryx; define

Supp(u) = {x € X : ry # 0}

Given a basis B of R and a finite subset W C X, prove
that there are only finitely many elements b € B with
Supp(b) € W. Conclude that | B| = Fin(X), where Fin(X)
is the family of all the finite subsets of X. Finally, using the
fact that |Fin(X)| = |X| when X is infinite, conclude that
R¥X) = RY) implies | X| = |Y].

2.2 Tensor Products

One of the most compelling reasons to introduce tensor products comes from
Algebraic Topology. The homology groups of a space are interesting (for
example, computing the homology groups of spheres enables us to prove the
Jordan Curve Theorem), and the homology groups of the cartesian product
X x Y of two topological spaces are computed (by the Kiinneth formula) in
terms of the tensor product of the homology groups of the factors X and Y.
Here is a second important use of tensor products. We saw, in Exam-
ple 2.2, that if k is a field, then every k-representation ¢ : H — Mat, (k) of a
group H to n x n matrices makes the vector space k" into a left k H-module;
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conversely, every such module gives a representation of H. If H is a subgroup
of a group G, can we obtain a k-representation of G from a k-representation
of H; that is, can we construct a kG-module from a k H-module? Now k H is
a subring of kG; can we “adjoin more scalars” to form a kG-module from the
k H-module? Tensor products will give a very simple construction, induced
modules, which does exactly this.

More generally, if S is a subring of a ring R and M is a left S-module, can
we adjoin more scalars to form a left R-module M’ that contains M ? If a left
S-module M is generated by a set X (so that each m € M has an expression of
the formm = ), six; fors; € S and x; € X), can we define a left R-module
M’ containing M as the set of all expressions of the form )", r;x; for r; € R?
Recall that if V is a vector space over a field k and gv = 0in V, where ¢ € k
and v € V, then either ¢ = 0 or v = 0. Now suppose that M = (a) is a cyclic
Z-module (abelian group) of order 2; if M could be imbedded in a Q-module
(i.e., a vector space V over Q), then 2a = 0 in V and yet neither factor is 0.
Thus, our goal of extending scalars has merit, but we cannot be so cavalier
about its solution. We must consider two problems: given a left S-module M,
can we extend scalars to obtain a left R-module M’ (always); if we can extend
scalars, does M imbed in M’ (sometimes).

Definition. Let R be aring, let Ag be a right R-module, let g B be a left R-
module, and let G be an (additive) abelian group. A function f: Ax B — G
is called R-biadditive if, for alla,a’ € A, b, b’ € B, and r € R, we have

fla+d b)= f(a,b)+ f(a', b),
fla,b+b)=f(a,b)+ f(a,b),
f(ar,b) = f(a,rb).

If R is commutative and A, B, and M are R-modules, then a function
f: Ax B — M is called R-bilinear if f is R-biadditive and also

flar,b) = f(a,rb) =rf(a,b)

[7f(a, b) makes sense here because f(a, b) now lies in the R-module M].

Example 2.43.

(1) If R is aring, then its multiplication ;: R x R — R is R-biadditive; the
first two axioms are the right and left distributive laws, while the third
axiom is associativity:

ular,b) = (ar)b = a(rb) = u(a, rb).

If R is a commutative ring, then p is R-bilinear, for (ar)b = a(rb) =
r(ab).
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(i1) If we regard a left R-module g M as its underlying abelian group, then
the scalar multiplication 6 : R X M — M is Z-bilinear.

(iii) If R is commutative and M and N are R-modules, then Homg (M, N)
is an R-module if we definerf: M — N by rf: m — f(rm), where
f € Homg(M, N) and r € R. With this definition, we can now see that
evaluation ¢: M x Homg(M, N) — N, given by (m, f) — f(m), is
R-bilinear. The dual space V* of a vector space V over a field k is a
special case of this construction: evaluation V x V* — k is k-bilinear.

(iv) The Pontrjagin dual of an abelian group G is defined to be G* =
Homgz (G, R/Z), and evaluation G x G* — R/Z is Z-bilinear (see
Exercise 3.19 on page 130). <«

Tensor product converts biadditive functions into linear ones.
Definition. Given aring R and modules Ag and g B, then their tensor prod-
uct is an abelian group A ®g B and an R-biadditive function
h:AxB— AQrB

such that, for every abelian group G and every R-biadditive f: A x B — G,
there exists a unique Z-homomorphism f: A ® g B — G making the follow-
ing diagram commute.

AQ®rB

Proposition 2.44. [f U and A ®r B are tensor products of Ar and pB
over R, then A @r B=U.

Proof. Assume that n: A x B — U is an R-biadditive function such that,
for every abelian group G and every R-biadditive f: Ax B — G, there exists
a unique Z-homomorphism f’: A ® g B — G making the following diagram

commute.

AxB—"— >y

Setting G = A®g B and f = h, there is a homomorphism #’: U — A®g B
with 'n = h. Similarly, setting G = U and f = 7 in the diagram defining
A ®p B, there is a homomorphism 77: A ®g B — U with 7h = 7.
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Consider the following new diagram.

A®gr B
e
! U laggB

. I

AQ®rB

AXxX B

Now /7 makes the big triangle with vertices A x B, A Qg B, and A Qg B
commute. But the identity 14g,p also makes this diagram commute. By
the uniqueness of the completing arrow (in the definition of tensor product),
we have h'7) = lag,p. A similar argument shows that 72" = 1y. Hence,
7: A®pg B — U is an isomorphism. e

Tensor product has been defined as a solution to a universal mapping
problem; it is an abelian group that admits a unique map making many dia-
grams commute (a precise definition can be found in Mac Lane, Categories
for the Working Mathematician, Chapter III). There are many universal map-
ping problems, and the proof of Proposition 2.44 is a paradigm proving that
solutions, if they exist, are unique to isomorphism (we will give a second
paradigm in Chapter 5).

Proposition 2.45. If R is a ring and Agr and r B are modules, then their
tensor product exists.

Proof. Let F be the free abelian group with basis A x B; that s, F is free on
all ordered pairs (a, b), where a € A and b € B. Define S to be the subgroup
of F generated by all elements of the following three types:

(a,b+0b")—(a,b) — (a,b);
(a+a',b) — (a,b) — (d, b);
(ar,b) — (a, rb).
Define A ®g B = F/S, denote the coset (a, b) + S by a ® b, and define
h:AxB—>AQ®QrB by h:(a,b)r—>a®b

(thus, & is the restriction of the natural map F — F/S). We have the follow-
ing identities in A @g B:
a®@b+b)y=a®b+a®b;
(a+d)®b=a®b+ad Qb;
ar @b =a rb.
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It is now obvious that 4 is R-biadditive.
Consider the following diagram, where G is an abelian group, f is R-
biadditive, and i: A x B — F 1is the inclusion.

AxB—>A®RB

\/

/

F
Ly
v%

G

Since F is free abelian with basis A x B, Proposition 2.34 says that there
exists a homomorphism ¢: F — G with ¢(a,b) = f(a, b) for all (a, b).
Now S C ker ¢ because f is R-biadditive, and so Exercise 2.11 on page 66
says that ¢ induces a map f: AQrB=F/S— Gby

fla®b)= f(a,b)+S) = ¢(a,b) = f(a,b).

This equation may be rewritten as fh = f; that is, the diagram commutes.
Finally, fis unique because A @g B is generated by the set of all a ® b’s,
and Exercise 2.3 on page 64 says that two homomorphisms agreeing on a set
of generators are equal. e

Remark. Since A Qg B is generated by the elements of the form a ® b,
every u € A ®g B has the form

M=Zai®bi.
i

This expression for u is not unique; for example, there are expressions

0=a®@b+b)—a®b—a@b,
0=@+ad)®b—a®b—d b,
0=ar®b—a®rb.

Therefore, given some abelian group G, we must be suspicious of a definition
ofamapu: A ®g B — G given by specifying u on the generators a ® b;
such a “function” # may not be well-defined, because elements have many
expressions in terms of these generators. In essence, u is defined only on
F, the free abelian group with basis A x B, and we must still show that
u(S) = {0}, because A ®g B = F/S. The simplest (and safest!) procedure
is to define an R-biadditive function on A x B; it will yield a (well-defined)
homomorphism. We illustrate this procedure in the next proof. <«
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Proposition 2.46. Let f: Ag — A and g: RB — B’ be maps of right
R-modules and left R-modules, respectively. Then there is a unique Z-map,
denotedby f @ g: AQr B — A’ @ B/, with

fRg:a®br f(a)®gb).

Proof. The functiongp: Ax B — A’®p B’, givenby (a, b) — f(a)Rg(b),
is easily seen to be an R-biadditive function. For example,

@: (ar,b) — f(ar) @ g(b) = f(a)r @ g(b)

and
@:(a,rb) — f(a) ® g(rb) = f(a) @ rg(b);

these are equal because of the identity a'r ® b’ = a’ @ rb’ in A’ g B’. The
biadditive function ¢ yields a unique homomorphism A @ g B — A’ @ B’
takinga @ b — f(a) @ g(b). e

Corollary 2.47. Given maps of right R-modules, A Loadsa , and maps

of left R-modules, B LAY UEN B,

(f'eg)(feg=rregs.

Proof. Both mapstake a @ b — [’ f(a) ® g’g(b), and so the uniqueness of
such a homomorphism gives the desired equation. e

Theorem 2.48. Given Ag, there is an additive functor Fy: gRMod — Ab,
defined by
FA(B) =A®rB and Fs(g) =14Q®g,

where g: B — B’ is a map of left R-modules.
Similarly, given gB, there is an additive functor Gp: Modgr — Ab,
defined by
Gp(A)=AQ®rB and Gp(f)=fQ®lp,

where f: A — A’ is a map of right R-modules.

Proof. First, note that F4 preserves identities: Fa(lp) = 14 ® 1p is the
identity 14gp5, because it fixes every generator a ® b. Second, F4 preserves
composition:

Fa(g'e) =140 ¢'g=(140¢)1aQ®g) = Fa(g)Fa(g).

by Corollary 2.47. Therefore, Fy4 is a functor.

To see that F4 is additive, we must show that F4 (g+h) = Fa(g)+Fa(h),
where g, h: B — B’;thatis, 1, ® (¢ +h) =14 ® g+ 14 ® h. This is also
easy, for both these maps senda @ b +—> a @ g(b) +a Q@ h(b). e
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Notation. We denote the functor F4 by A ®g [, and we denote the functor
Gp by ®g B.

Corollary 2.49. If f: M — M’ and g: N — N’ are, respectively, isomor-
phisms of right and left R-modules, then f @ g: M Qg N — M’ Qg N’ is an
isomorphism of abelian groups.

Proof. Now f ® 1y is the value of the functor [J ® g N on the isomorphism
f,and hence f ® 1y is an isomorphism; similarly, 13 ® g is an isomorphism.
By Corollary 2.47, we have f @ ¢ = (f ® 1y)(1y ® g). Therefore, f ® g
is an isomorphism, being the composite of isomorphisms. e

Before continuing with properties of tensor products, we pause to discuss
a technical point. In general, the tensor product of two modules is only an
abelian group; is it ever a module? If so, do the tensor product functors then
take values in a module category, not merely in Ab; that is, is 1 ® f then a
map of modules? The notion of bimodule usually answers such questions.

Definition. Let R and S be rings and let M be an abelian group. Then M
is an (R, S)-bimodule, denoted by g Mg, if M is a left R-module and a right
S-module, and the two scalar multiplications are related by an associative law:

r(ms) = (rm)s
forallr €e R,m e M,ands € S.

If M is an (R, S)-bimodule, it is permissible to write rms with no paren-
theses, for the definition of bimodule says that the two possible associations
agree.

Example 2.50.

(i) Every ring R is an (R, R)-bimodule; the extra identity is just the asso-
ciativity of multiplication in R. More generally, if § € R is a subring,
then R is an (R, S)-bimodule.

(i) Every two-sided ideal in a ring R is an (R, R)-bimodule.

(iii) If M is a left R-module (i.e., if M = rM), then M is an (R, Z)-
bimodule; that is, M = grMy. Similarly, a right R-module N is a
bimodule 7 Ng.

(iv) If R is commutative, then every left (or right) R-module is an (R, R)-
bimodule. In more detail, if M = pM, define a new scalar multiplica-
tion M x R — M by (m, r) — rm. To see that M is a right R-module,
we must show that m(rr’) = (mr)r’, thatis, (rr’)m = r’(rm), and this
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is so because rr’ = r'r. Finally, M is an (R, R)-bimodule because both
r(mr’) and (rm)r’ are equal to (rr')m.

(v) We can make any left kG-module M into a right kG-module by defining
mg = g~ 'm for every m € M and every g in the group G. Even though
M is both a left and right kG-module, it is usually not a (kG, kG)-
bimodule because the required associativity formula may not hold. In
more detail, let g,h € G and m € M. Now g(mh) = g(h_lm) =
(gh~")m; on the other hand, (gm)h = h~'(gm) = (h~'g)m. To see
that these can be different, take M = kG, m = 1, and g and & noncom-
muting elements of G. <«

The next proposition uses tensor product to extend scalars.

Proposition 2.51 (Extending Scalars). Let S be a subring of a ring R.

(1) Given a bimodule rAs and a left module B, then the tensor product
A ®gs B is a left R-module, where

r(a®b) = (ra)®b.

Similarly, given Ag and sBp, the tensor product A Qs B is a right R-
module, where (a @ b)r = a ® (br).

(i1) The ring R is an (R, S)-bimodule and, if M is a left S-module, then
R ®s M is a left R-module.

Proof.

(i) For fixed r € R, the multiplication u,: A — A, defined by a — ra, is
an S-map, for A being a bimodule gives

ur(as) =r(as) = (ra)s = pu,(a)s.

If F=0O®gs B: Mods — Ab, then F(u,;): AQs B — A ®gs Bisa
(well-defined) Z-homomorphism. Thus, F(u,) = u, ® l1p: a @ b —>
(ra) ® b, and so the formula in the statement of the lemma makes sense.
It is now straightforward to check that the module axioms do hold for
A ®s B.

(i) Example 2.50(i) shows that R can be viewed as an (R, S)-bimodule,
and so part (i) applies. e

For example, if V and W are vector spaces over a field k, then their tensor
product V ®; W is also a vector space over k.
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Example 2.52. If H is a subgroup of a group G, then a representation of
H gives a left k H-module B. Now kH C kG is a subring, so that kG is a
(kG, k H)-bimodule. Therefore, Proposition 2.51(ii) shows that kG Qg B is a
left kG-module. The corresponding representation of G is called the induced
representation. <

We see that proving properties of tensor product is often a matter of show-
ing that obvious maps are, indeed, well-defined functions.

Corollary 2.53.

(1) Given a bimodule sAR, the functor A @g [1: gkMod — Ab actually
takes values in sMod.

(1) If R is a ring, then A ®g B is a Z(R)-module, where

ra®b)=(ra)@b=a®rb
forallr € Z(R),a € A, and b € B.
(i) If Risaring, r € Z(R), and i, : B — B is multiplication by r, then
la®u,: AQr B—> AQ®r B
is also multiplication by r.
Proof.

(i) By Proposition 2.51, A ®g B is a left S-module, where s(a ® b) =
(sa) ® b, and so it suffices to show that if g: B — B’ is a map of left
R-modules, then 14 ® g is an S-map. But

(14 ®g)s(a®Db)] = (14 ® g)l(sa) ®b]
= (sa) ® gb
=s(a ® gb) by Proposition 2.51
=s(la®g)(a®b).
(i1) Since the center Z(R) is commutative, we may regard A and B as

(Z(R), Z(R))-bimodules by defining ar = ra and br = rb for all
r € Z(R),a € A,and b € B. Proposition 2.51(i) now gives

rla®b)=(ra)®b=(ar)®b =a Qrb.
(iii) This statement merely sees the last equation a ® rb = r(a ® b) from a
different viewpoint:
(Ia®@u)a®b)=a®@rb=r(a®Db). e
The next technical result complements Proposition 2.51: when one of the

modules is a bimodule, then Hom also has extra structure. The reader will
frequently refer back to this.
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Proposition 2.54. Let R and S be rings.

(1) Given rAs and rB, then Hompg(A, B) is a left S-module, where
sf:awr f(as), and Homg(A, O) is a functor gMod — sMod.

(i1) Given rAs and Bg, then Homg(A, B) is a right R-module, where
fr:aw f(ra), and Homg(A, O) is a functor Modg — Modpg.

(iii) Given sBr and Ag, then Homg(A, B) is a left S-module, where
sf:aw> s[f(a)], and Homg (O, B) is a functor Modg — sMod.

(iv) Given §Bg and sA, then Homg(A, B) is a right R-module, where
fr:aw f(a)r, and Homg(A, 0) is a functor sMod — Modpg.

Proof.  All parts are routine. e

Remark. Let f: A — B be an R-map. Suppose we write fa [instead of
f(a)] when A is aright R-module and af [instead of (a) f] when A is a left
R-module (that is, write the function symbol f on the side opposite the scalar
action). With this notation, each of the four parts of Proposition 2.54 is an
associative law. For example, in part (i) with both A and B left R-modules,
writing sf for s € S, we have a(sf) = (as)f. Similarly, in part (ii), we
define fr,forr € Rsothat (frya= f(ra). <«

We have made some progress in our original problem: given a left S-
module M, where S is a subring of a ring R, we can create a left R-module
from M by extending scalars; that is, Proposition 2.51 shows that R ® s M
is a left R-module. However, we still ask, among other things, whether a
left S-module M can be imbedded in R ®s M. More generally, let A” C A
be right R-modules and let i: A” — A be the inclusion; if B is a left R-
module,isi ® 1p: A’ ®g B — A ®p B an injection? Example 2.64 gives
a negative answer, and investigating keri ® 15 was one of the first tasks of
Homological Algebra. The best way to attack this problem is to continue
studying properties of tensor functors.

We have defined R-biadditive functions for arbitrary, possibly noncom-
mutative, rings R, whereas we have defined R-bilinear functions only for
commutative rings. Recall that if R is commutative and A, B, and M are R-
modules, then a function f: A x B — M is R-bilinear if f is R-biadditive
and f(ar,b) = f(a,rb) =rf(a,b). Tensor product was defined as the solu-
tion of a certain universal mapping problem involving R-biadditive functions;
we show now, when R is commutative, that tensor product A®pg B also solves
the universal mapping problem for R-bilinear functions.
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Proposition 2.55. If R is a commutative ring and A, B are R-modules, then
A®pg B is an R-module, the functionh: A x B — A®pg B is R-bilinear, and,
for every R-module M and every R-bilinear function g: A x B — M, there
exists a unique R-homomorphism g: A Qg B — M making the following
diagram commute.

AQ®rB

Proof. By uniqueness, as in the proof of Proposition 2.44, it suffices to show
that A ® g B is a solution if we define h(a, b) = a ® b; note that & is also
R-bilinear, thanks to Corollary 2.53. Since g is R-bilinear, it is R-biadditive,
and so there does exist a Z-homomorphismg: AQg B — M with g(a®b) =
g(a, b) for all (a,b) € A x B. We need only show that g is an R-map. If
u € R,

gu(a ®b)) =g((ua) @ b)
= g(ua, b)
=ug(a,b), for g is R-bilinear
=uga®Db). e

The tensor functors obey certain commutativity and associativity laws that
have no analogs for the Hom functors.

Proposition 2.56 (Commutativity).
(1) If Risaring and Mg, RN are modules, then there is a Z-isomorphism
T-MRRN —> N Qoo M
witht: m @ n — n ® m. The map t is natural in the sense that the
following diagram commutes:
M@rN—->N Qo M
feg) |ser
M @r N ——— N'Qpo» M'.
(1) If R is a commutative ring and M and N are R-modules, then T is an
R-isomorphism.

Proof. Consider the diagram

M x N M Qr N
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where f(m,n) =n ® m. Itis easy to see that f is R-biadditive, and so there
isaunique Z-map t: M Qg N — N Qoo M witht: m @n —> n Q@ m. A
similar diagram, interchanging the roles of M ® g N and N ®@pgor M, gives
a Z-map in the reverse direction taking n ® m +— m ® n. Both composites
of these maps are obviously identity maps, and so 7 is an isomorphism. The
proof of naturality is routine, as is the proof of (ii). e

Proposition 2.57 (Associativity). Given Ag,g Bs, and sC, there is an iso-
morphism
0: AQr(B®sC)=(A®r B)®sC
given by
a®@bR®c)—> (a®b) Qc.

Proof. Define a triadditive function h: A x B x C — G, where G is an
abelian group, to be a function satisfying

h(ar,b,c) = h(a,rb,c) and h(a,bs,c) = h(a,b, sc)

forall » € R and s € S, and that is additive in each of the three variables
when we fix the other two [e.g., h(a + a’,b,c) = h(a,b,c) + h(d, b, ¢)].
Consider the univeral mapping problem described by the diagram

h

AxBxC T(A,B,C)

\ }/fN

G.

Here, an abelian group 7' (A, B, C) and a triadditive function 4 are given once
for all, while G is any abelian group, f is triadditive, and ]7 is the unique Z-
homomorphism making the diagram commute.

We show that A ®g (B ®s C) is a solution to this universal mapping
problem. Define a triadditive function 2: A x B x C — A ®r (B ®s C) by
h:(a,b,c)» a® (b ®c). Let f: A x Bx C — G be triadditive, where
G is some abelian group. If a € A, the function f,: B x C — G, defined by
(b,c) = f(a,b,c),is S-biadditive, and so it gives a unique homomorphism
fa: B®sC — G taking b®c — f(a,b,c). Ifa,d’ € A, then fo,(bQc) =
fla+d.,b,c)= fa,b,c)+ f(d,b,c) = fab®c)+ fy(bRc). It follows
that the function ¢: A X (B®QsC) — G, defined by p(a, bQc) = ﬁ(b@c), is
agditive in both variables. It is R-biadditive, foL ifr € R, then p(ar,b®c) =
Jar(b ® ¢) = flar,b,c) = f(a,rb,c) = fa(rb ® ¢) = ¢(a,r(b @ c)).
Hence, there is a unique homomorphism f: A Qg (B®sC) - G with
a® b®c)r— ¢lab®c) = fla,b,c); thatis, fn = f. Therefore,
A ®r (B ®s C) and h give a solution to the universal mapping problem.
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In a similar way, we can prove that (A ®g B) ®s C and the triadditive
function (a, b, ¢) — a ® b ® c is another solution. Uniqueness of solutions to
universal mapping problems, as in the proof of Proposition 2.44, shows that
there is an isomorphism A (BRsC) - (AQr B)®sC witha® (b®c)
(a®@b)Rc. e

The reader can construct another proof of associativity in the spirit of our
proof of the existence of A ® g B as a quotient of a free abelian group; see
Exercise 2.30 on page 94.

A set A with an associative binary operation satisfies generalized asso-
ciativity if for all n > 3 and a; € A for all i, every product a; - - - a,, needs no
parentheses to be well-defined. Generalized associativity for tensor product
does hold: every product A ® --- ® A, needs no parentheses to be well-
defined (see Exercise 2.30 on page 94); however, it does not follow from the
fact just cited because equality A @ (B ®s5 C) = (A Qg B) ®s C was not
proved; Proposition 2.57 only says that these two groups are isomorphic. (See
Mac Lane, Categories for the Working Mathematician, Section VII 3).

Recall Exercise 2.13 on page 66: for any left R-module M, for any f €
Hompg (R, M), and forany r, s € R,themap rf: s — f(sr) defines a natural
isomorphism from Hompg (R, [J) — M to the identity functor on gMod. Here
is the analog for tensor products.

Proposition 2.58. There is a natural R-isomorphism
om: RQr M — M,

for every left R-module M, where @p: r @ m +— rm.

Proof. 'The function R x M — M, given by (r, m) — rm, is R-biadditive,
and so there is an R-homomorphism ¢: R g M — M withr @ m — rm
[we are using the fact that R is an (R, R)-bimodule]. To see that ¢ is an R-
isomorphism, it suffices to find a Z-homomorphism f: M — R ®p M with
¢f and f¢ identity maps (for it is now only a question of whether the function
¢ is a bijection). Such a Z-map is given by f: m > 1 @ m.

Naturality is proved by showing commutativity of the following diagram.

R®RM¢L>M

ol s

It suffices to check the maps on generators r @ m. Going clockwise, r @ m >
rm +— f(rm); going counterclockwise, r ® m +— r @ f(m) — rf(m). These
are equal because f is an R-map. e
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Definition. Let £ be a commutative ring. Then a ring R is a k-algebra if R
is a k-module satisfying

a(rs) = (ar)s = r(as)
foralla € kandr,s € R.

Consider the important special case in which k& is isomorphic to a subring
k" of R. In this case, the defining identity with s = 1 isar = ra forall r € R;
that is, K C Z(R), the center of R. This explains why we assume, in the
definition of k-algebra, that k is commutative.

Example 2.59.
(1) If R is a k-algebra, then R[x] is also a k-algebra.

(i1) If k is a commutative ring, then the ring of matrices R = Mat, (k) is a
k-algebra.

(iii) If k is a field and R is a finite-dimensional k-algebra, then every left or
right ideal / in R is a subspace of R, so that dim(/) < dim(R). A basis
of I generates I as a k-module; a fortiori, it generates / as an R-module,
and so [ is finitely generated.

(iv) If k is a commutative ring and G is a (multiplicative) group, then the
group ring kG is a k-algebra. <«

The tensor product of two k-algebras is itself a k-algebra.

Proposition 2.60. If k is a commutative ring and A and B are k-algebras,
then the tensor product A ® B is a k-algebra if we define

(@a®b)a ®b)=ad Qbb'.

Proof. First, A ®; B is a k-module, by Theorem 2.48. Let u: A x A - A
and v: B x B — B be the given multiplications on the algebras A and B,
respectively. We must show there is a multiplication on A ®; B as in the
statement; that is, there is a k-bilinear function 1: (A ®; B) x (A ®; B) —
AQrBwithA: (a®b,a’ @b') — aa’ @bb’. Such a function X exists because
it is the composite

(A®k B) x (A®k B) > (A® B) ® (A Qx B) (1
— [(A®k B) ®c A] ® B (2)
— [A Q@ (B®r A)] @« B 3)
— [A @ (A ®r B)] ® B 4)
— [(A®k A) ®r B]®« B (5)
— (A®r A) ® (B ®k B) (6)

— A®r B: (7
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map (1)is (a®b, a' @) > a®@b®a’®b’; maps (2) and (3) are associativity;
map (4)is 1 @t @1, wheret: B A > AQ; Btakesb®a — a ® b;
maps (5) and (6) are associativity; the last map is u ® v. Each of these maps
is well-defined (see my book Advanced Modern Algebra, Section 9.6). The
reader may now verify that the k-module A ®j B is a k-algebra. e

Bimodules can be viewed as left modules over a suitable ring.

Corollary 2.61. Let R and S be k-algebras, where k is a commutative ring.
Every (R, S)-bimodule M is a left R ®; S°P-module, where

(r ® s)m = rms.

Proof.  The function R x S°° x M — M, given by (r, s, m) + rms, is
k-trilinear, and this can be used to prove that (r ® s)m = rms is well-defined.
Let us write s * s” for the product in S°P; that is, s * s’ = s’s. The only
axiom that is not obvious is axiom (iii) in the definition of module: if a, a’ €
R ®j S°P, then (aa’)m = a(a’m), and it is enough to check that this is true
for generatorsa = r @ s and a’ = r’ ® s’ of R ®; S°P. But

[(r®s) ' @s)m=1[rr ® s *s'lm
= (rr)m(s * s)
= (rr)m(s’s)

=r(r'ms’)s.
On the other hand,

) @s Yml = s)[r'(ms)] =r@'ms)s. o

Definition. If A is a k-algebra, where k is a commutative ring, then its
enveloping algebra is
A = A @ AP,

Corollary 2.62. If A is a k-algebra, where k is a commutative ring, then
A is a left A°-module whose submodules are the two-sided ideals. If A is a
simple k-algebra, then A is a simple A¢-module.

Proof. Since a k-algebra A is an (A, A)-bimodule, it is a left A°-module. o

We now present properties of tensor products that will help us compute
them. First, we give a result about Hom, and then we give the analogous result
for tensor. Corollary 2.22(ii) says that any additive functor 7: RkMod — Ab
preserves direct sums of modules: T(A & C) = T(A) & T(C). If we regard
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such a direct sum as a split short exact sequence, then we may specialize the
corollary by taking 7 = X ®g [J and saying that if

0>A5>B5C—0
is a split short exact sequence, then so is

1 1
0> XorA -2 XorB 22 X®pC — 0.

This leads us to a more general question: if

0>A>BAC—0
is any short exact sequence, not necessarily split, is

1 1
0> XA -2 X2 B2 X®rC — 0

also an exact sequence? Here is the answer (there is no misprint in the state-

ment of the theorem: “O0 — should not appear at the beginning of the se-

quences, and we shall discuss this point after the proof).

Theorem 2.63 (Right Exactness).> Let A be a right R-module, and let
B5BL B >0

be an exact sequence of left R-modules. Then

1 1
A@r B "2 A2 B 28 A@r B" — 0

is an exact sequence of abelian groups.

Remark. We will give a nicer proof of this theorem once we prove the
Adjoint Isomorphism (see Proposition 2.78). <«

Proof.  There are three things to check.

(1) im(1 ®i) € ker(1 ® p).

It suffices to prove that the composite is 0; but

(1Ip(l®i)=10pi=100=0.

SThese functors are called right exact because the functored sequence has “— 0 on
the right-hand side.
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(i) ker(1® p) € im(1 ®1i).
Let £ =im(1 ® i). By part (i), £ C ker(1 ® p), and so 1 ® p induces
amap p: (A® B)/JE — A ® B” with
P:a®b+ Er a® pb,
wherea € Aandb € B. Nowifr: AQ B — (A® B)/E is the natural

map, then
pr =1®p,

for bothsenda ® b +— a ® pb.
A®rB——"——> (AQr B)/E

P

A®BII

Suppose we show that p is an isomorphism. Then
ker(1 ® p) =kerpr =kernm = E =im(1 ® i),
and we are done. To see that p is, indeed, an isomorphism, we construct
its inverse A ® B” — (A ® B)/E. Define
f:AxB"—- (A® B)/E

as follows. If »” € B”, there is b € B with pb = b”, because p is
surjective; let
f:i@b)y—a®b.

Now f is well-defined: if pb; = b”, then p(b — b)) =0and b — b; €
ker p = imi. Thus, there is ¥ € B’ with ib’ = b — by, and hence
a®((b—b)) =a®ib € im(1®i) = E. Clearly, f is R-biadditive, and
so the definition of tensor product gives a homomorphism f: AQB" —
(A ® B)/E with f(a ®b") = a ® b + E. The reader may check that
fis the inverse of p, as desired.

(iii) 1 ® p is surjective.

If ) a; ® b € A® B”, then there exist b; € B with pb; = b for all
i, for p is surjective. But

1®pZZai®b,’I—>Zai®pbi=zai®b;/.

A similar statement holds for the functor D ® g B: if B is a left R-module

and A’ > A 5 A” — 0 s a short exact sequence of right R-modules, then
the sequence

A Qg B—>A®RB—>A”®RB—>O

is exact.



86 HoM AND TENSOR CH. 2

Definition. A (covariant) functor 7: gkMod — Ab is called right exact if
exactness of a sequence of left R-modules

B5BAB -0
implies exactness of the sequence

r8) 8 7)) 2 1(8") - 0.

There is a similar definition for covariant functors Modz — Ab.

The functors A ® g [J and [ ® g B are right exact functors.
The next example shows why “0 —” is absent in Theorem 2.63.

Example 2.64. Consider the exact sequence of abelian groups

07 -5 Q- Q/Z 0,

where i is the inclusion. By right exactness, there is an exact sequence

LRZ-ZELRQ=>Le@Q/Z) — 0

(we abbreviate ®z to ® here). Now [, ® Z = I, by Proposition 2.58. On the
other hand, if a ® ¢ is a generator of [, ® Q, then

a®q=a® (2q/2) =2a®(q/2) =0 (q/2) =0.

Therefore, [, ® Q = {0}, and so 1 ® i cannot be an injection.

Thus, tensor product may not preserve injections: if i : B’ — B is injec-
tive, the map 1y ® i may have a nonzero kernel. We will determine ker 1 x ® i
in general when we study the functor Tor. «

The next theorem says that tensor product preserves arbitrary direct sums;
compare it with Theorems 2.30 and 2.31.

Theorem 2.65. Let Ag be a right module, and let (rB;)ic1 be a family of
left R-modules.

(1) There is a Z(R)-isomorphism
T: A®R@Bi — @(A ®r Bi)
iel iel

witht:a ® (b)) — (a ® b;). Moreover, if R is commutative, then T is
an R-isomorphism.
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(ii) The isomorphism T is natural: if (C;) jey is a family of left R-modules
and, for each i € I, there exist j € J and an R-map o;;: B; — Cj,
then there is a commutative diagram

1
A QR D;c; Bi %7, AQ®r @jeJ Cj

‘| I+

P, (A®r Bj) — D, (A®rC)),

where o : (b;) = (0;;b;) and o : (a ® b;) — (a @ 0j;b;).
Proof.

(i) Since the function f: A x (@l B,-) — P;(A ®r Bj), given by
f:(a, (bi)) — (a ® b;),is R-biadditive, there is a Z-homomorphism

v A®r (D Bi) - @A @k B)

with 7: a®(b;) — (a®b;). Now AQR (B;; Bi) and P, (AQr B;)
are Z(R)-modules, and 7 is a Z(R)-map (for 7 is the function given by
the universal mapping problem in Proposition 2.55).

To see that 7 is an isomorphism, we give its inverse. Denote the in-
jection By — €P; B; by Ax [where Aby € €D; B; has kth coordi-
nate b; and all other coordinates O], so that 14 ® Ar: A ®r Br —
A ®r (@l Bi). That direct sum is the coproduct in pMod gives a ho-
momorphism 6: €P;(A Qg B)) > A®g (B; B;) with0: (a @ b;) >
a® Y ; Aib;. It is now routine to check that 6 is the inverse of 7, so that
7 is an isomorphism.

(ii) Going clockwise, a ® (b;) — a ® (0;jb;) = (a ® o0;;b;); going coun-
terclockwise, a ® (b;) — (a @ b;) — (a ® ojjb;). e

We shall see, in Example 3.52, that tensor product may not commute with
direct products.

Example 2.66. Let V and W be vector spaces over a field k. Now W is
a free k-module; say, W = @;_;(w;), where {w; : i € I} is a basis of W.
Therefore, V @ W = @,.; V ®k (w;). Similarly, V = EBjGJ<vj), where
{vj:j e J}isabasisof V and, foreachi, V ® (w;) = @jej(vj) R (w;).
But the one-dimensional vector spaces (v;) and (w;) are isomorphic to k, and
Proposition 2.58 gives (v;) ®; (w;) = (v; ® w;). Hence, V ®; W is a vector
space over k having {v; ® w; : i € [ and j € J} as a basis. In case both V
and W are finite-dimensional, we have

dim(V @ W) = dim(V) dim(W). <«
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Example 2.67. We now show that there may exist elements in a tensor prod-
uct V ®; V that cannot be written in the form v ® w foru, w € V.

Let vy, v be a basis of a two-dimensional vector space V over a field k.
As in Example 2.66, a basis for V ®; V is

VU, VUV, V2RV, V2R V.

We claim that there do not exist u, w € V withvi @ vu + 1L, @ V| = u ® w.
Otherwise, write u# and w in terms of v; and v:

VIQUt 1RV =uQw
= (avi + bvy) ® (cv; +dvy)
=acvy ® v +adv; @ v2 + bcvy ® v + bdvy ® vs.

By linear independence of the basis, ac = 0 = bd and ad = 1 = bc. The
first equation gives a = 0 or ¢ = 0, and either possibility, when substituted
into the second equation, gives0 = 1. <«

Proposition 2.68. If R is a ring, r € Z(R), and M is a left R-module, then
R/(r)Qr M = M/rM.

In particular, for every abelian group B, we have 1, ®7 B = B/nB.

Proof. There is an exact sequence
RE RE RS0,

where R* = R/(r) and p, is multiplication by r. Since J®, M is right exact,
there is an exact sequence

. |
Ror M™% Ror M2 R*®@r M — 0.

Consider the diagram

r®1 ®1
ROr ML Rr M 25 R* @p M — 0

a o

M———>M > M/rM ——0,

where 6: R @ g M — M is the isomorphism of Proposition 2.58, namely,
0:a®m > am,wherea € R and m € M. This diagram commutes, for both
composites take a @ m +— ram. Proposition 2.70 applies to this diagram,
yielding R* Qg M = M/rM. e
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Example 2.69. Exercise 2.29 on page 94 shows that there is an isomorphism
of abelian groups I, ® I,, = I;, where d = (m, n). It follows that if (m, n) =
1, then [, ® I, = {0}. Of course, this tensor product is still {0} if we regard
I, and T,, as Z-algebras. In this case, the tensor product is the zero ring. Had
we insisted, in the definition of ring, that 1 # 0, then the tensor product of
rings would not always be defined. <«

Proposition 2.70. Given a commutative diagram with exact rows,

i p

A’ A A" 0
|
fi lg I h
v
B —B B 0,
j q

there exists a unique map h: A” — B” making the augmented diagram com-
mute. Moreover, h is an isomorphism if f and g are isomorphisms.

Proof. Ifa” € A”, then there is a € A with p(a) = a” because p is surjec-
tive. Define h(a”) = gg(a). Of course, we must show that 4 is well-defined;
that is, if u € A satifies p(u) = a”, then gg(u) = qg(a). Since p(a) = p(u),
we have p(a —u) = 0, so that a — u € ker p = im i, by exactness. Hence,
a—u=i(a"), forsomea’ € A’. Thus,

gg(a—u)=qgi(a)=qjf@) =0,

because gj = 0. Therefore, h is well-defined. If A': A” — B” satisfies
h'p=gqgandifa” € A”, choose a € A with pa = a”. Then h'pa = h'a" =
gga = ha”, and so h is unique.

To see that the map 4 is an isomorphism, we construct its inverse. As in
the first paragraph, there is a map 2’ making the following diagram commute:

B’ B B” 0

|
jli lgl In
\
A ; A 7 A" 0.

We claim that &’ = h~'. Now h’q = pg~!. Hence,
Whp=hqg=pg'g=p;

since p is surjective, we have h'h = 14~. A similar calculation shows that the
other composite A’ is also the identity. Therefore, 4 is an isomorphism. e
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The proof of the last proposition is an example of diagram chasing. Such
proofs appear long, but they are, in truth, quite mechanical. We choose an
element and, at each step, there are only two things to do with it: either push
it along an arrow or lift it (i.e., choose an inverse image) back along another
arrow. The next proposition is also proved in this way.

Proposition 2.71.  Given a commutative diagram with exact rows,

i p

0 A’ A A"
I
Aol
\
0 B —B B,
J q

there exists a unique map f: A’ — B’ making the augmented diagram com-
mute. Moreover, f is an isomorphism if g and h are isomorphisms.

Proof. A diagram chase. e

Who would think that a lemma about 10 modules and 13 homomorphisms
could be of any interest?

Proposition 2.72 (Five Lemma).  Consider a commutative diagram with
exact rows.

Ay As A3 Ay As
hll hzl \Lh3 lh4 lh5
B, B> B3 By Bs

(1) If hy and hy are surjective and hs is injective, then hs is surjective.
(1) If ho and hy are injective and h is surjective, then hj is injective.
(ii1) If hy, ho, ha, and hs are isomorphisms, then h3 is an isomorphism.

Proof. A diagram chase. e

We have already seen, in Example 2.69, that a tensor product of two
nonzero abelian groups can be zero. Here is another instance of this.

Definition. An abelian group D is called divisible if, for each d € D and
every nonzero natural number n, there exists d’ € D with d = nd’.
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It is easy to see that Q is a divisible abelian group. Moreover, every
direct sum and every direct product of divisible groups is divisible. Thus, R is
divisible, for it is a vector space over Q and, hence, it is a direct sum of copies
of Q (for it has a basis); similarly, C is divisible. Every quotient of a divisible
group is divisible. Thus, R/Z and Q/7Z are divisible abelian groups (note that
R/Z = S the unit circle in C, via x + Z > eZ”ix).

Proposition 2.73. If T is an abelian group with every element of finite order
and if D is a divisible abelian group, then T @7 D = {0}.

Proof. It suffices to show that each generator t ® d, wheret € T andd € D,
is 0in T ®z D. Since t has finite order, there is a nonzero integer n with
nt = 0. As D is divisible, there exists d’ € D with d = nd’. Hence,

rQd=tnd =nt®d =09d =0. e

We now understand why we cannot make a finite abelian group G into a
nonzero (Q-module, for G ®7 Q = {0}.

Corollary 2.74. If D is a nonzero divisible abelian group with every element
of finite order (e.g., D = Q/7Z), then there is no multiplication D x D — D
making D a ring.

Proof.  Suppose that there is a multiplication u: D x D — D making D
aring. If 1 is the identity, we have 1 # 0, lest D be the zero ring, which
has only one element. Since multiplication in a ring is Z-bilinear, there is a
homomorphism fi: DQ®zD — D with i(d®d’) = u(d,d") foralld, d’ € D.
In particular, if d # 0, then Z(d®1) = u(d, 1) =d # 0. But D®z D = {0},
by Proposition 2.73, so that i(d ® 1) = 0. This contradiction shows that no
multiplication © on D exists. e

2.2.1 Adjoint Isomorphisms

There is a remarkable relationship between Hom and ®. The key idea is that
a function of two variables, say, f: A x B — C, can be viewed as a one-
parameter family of functions of one variable: if we fix a € A, then define
fa: B — C by b — f(a,b). Recall Proposition 2.51: if R and S are
rings and Ay and g Bg are modules, then A ®g B is a right S-module, where
(a ® b)s = a ® (bs). Furthermore, if Cg is a module, then Homg(B, C)
is a right R-module, where (fr)(b) = f(rb); thus Homgr (A, Homg(B, C))
makes sense, for it consists of R-maps between right R-modules. Finally, if
F € Hompg(A, Homg(B, C)), we denote its value on @ € A by F,, so that
F,: B — C, defined by F,: b — F(a)(b), is a one-parameter family of
functions. There are two versions of the adjoint isomorphism, arising from
two ways in which B can be a bimodule (either g Bs or s Bg).
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Theorem 2.75 (Adjoint Isomorphism, First Version). Given modules
AR, rBs, and Cs, where R and S are rings, there is a natural isomorphism:

74.B,c: Homg(A ®r B, C) — Homg(A, Homg(B, C)),
namely, for f: AQr B— C,a € A, and b € B,
taB.c: f = T(f), where T(f)q: b f(a ®b).

Remark. In more detail, fixing any two of A, B, C, each t4 p c is a natural
isomorphism:

Homs (O ®z B, C) — Hompg (O, Homg(B, C)),

Homg(A ®g [, C) — Hompg (A, Homg ([, C)),

Homg(A ®g B, ) — Homg(A, Homg (B, [J)).
For example, if f: A — A/, there is a commutative diagram

TA',B.C

Homg(A’ ®r B, C) Hompg(A’, Homg (B, C))
(felp)| |
Homg(A ®r B, C) ﬁCHomR(A, Homg(B, C)). <«

Proof. To prove that T = 74 p,c iSa Z-map, let f,g: AQ@r B — C. The
definition of f + g gives, foralla € A,

T(f+8a: b (f +8)(@®Db)
= f(a®Db)+ gla®Db)
=1(a(d) + 1(8)a(b).
Therefore, T(f + g) = t(f) + 1(g).
Next, 7 is injective. If t(f), = Oforalla € A, then 0 = t(f),(b) =
f(a®Db) foralla € A and b € B. Therefore, f = 0 because it vanishes on
every generator of A @ B.

We now show that 7 is surjective. If F: A — Homg(B, C) is an R-map,
define ¢: A x B — C by ¢(a, b) = F,(b). Now consider the diagram

AQ®gr B

It is straightforward to check that ¢ is R-biadditive, and so there exists a Z-
homomorphism ¢: A g B — C with ¢(a ® b) = ¢(a, b) = F,(b) for all
a € Aand b € B. Therefore, F = t(¢) and 7 is surjective.

The reader can check that the maps t are natural. e

If B = gBpg is an (S, R)-bimodule, there is a variant of Theorem 2.75
(whose proof is left to the reader).
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Theorem 2.76 (Adjoint Isomorphism, Second Version).  Given modules
RA, sBg, and sC, where R and S are rings, there is a natural isomorphism:

7). .c: Homg(B ®g A, C) - Homg(A, Homg(B, C)),
namely, for f: BQr A — C,a € A, andb € B,
thpc: [T (). where t'(f)q: b= f(b®a).

Corollary 2.77.

(1) Given modules g Bs and Cg, the functors Homg ((J, Homg(B, C)) and
Homs(O ®s B, C): Modg — Ab, are naturally isomorphic.

(i1) Given modules sBg, and sC, the functors Homg (L], Homg (B, C)) and
Homg(B ®s [, C): gkMod — Ab are naturally isomorphic.

Proof. 1If B and C are fixed, then the maps 74 p c and r/g . ¢ form natural
isomorphisms. e

As promised earlier, here is another proof of Theorem 2.63, the right ex-
actness of tensor product.

Proposition 2.78 (Right Exactness). Let Ag be a right R-module, and let
B 5 BE B 50
be an exact sequence of left R-modules. Then

1 1
AR B "% AorB Y Ao B" > 0

is an exact sequence of abelian groups.

Proof. Regard a left R-module B as an (R, Z)-bimodule, and note, for any
abelian group C, that Homz (B, C) is a right R-module, by Proposition 2.54.
In light of Proposition 2.42, it suffices to prove that the top row of the follow-
ing diagram is exact for every C:

0 = Homy (A ®p B”, C) = Homz(A ®g B, C) = Homy(A ®r B’, C)

" ’
rA,C\L i”‘-c \LTA,C

0 —— Homp(A, H") —— Homg(A, H) —— Hompg (A, H),

where H” = Homy(B”, C), H = Homy(B, C), and H' = Homyz(B’, C).
By the Adjoint Isomorphism, the vertical maps are isomorphisms and the di-
agram commutes. The bottom row is exact, for it arises from the given exact
sequence B — B — B” — 0 by first applying the left exact (contravari-
ant) functor Homgz ([J, C), and then applying the left exact (covariant) functor
Hompg (A, [J). Exactness of the top row now follows from Exercise 2.31 on
page 95. e
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Exercises

2.27

2.28

*2.29

*2.30

Let V and W be finite-dimensional vector spaces over a field F,
say, and let vy, ..., v, and wy, ..., w, be bases of V and W, re-
spectively. Let S: V — V be a linear transformation having matrix
A = [a;j], and let T: W — W be a linear transformation having
matrix B = [br¢]. Show that the matrix of SQ 7T: V Q, W —
V @i W, with respect to a suitable listing of the vectors v; ® wj, is
the nm x nm matrix K, which we write in block form:

annB apB -+ auB

aB  apB --- ayB
AQ B = . . .

amB awB - aumB

Remark. The matrix A ® B is called the Kronecker product of
the matrices A and B. <«

Let R be a domain with Q = Frac(R), its field of fractions. If A
is an R-module, prove that every element in Q ®g A has the form
g ®aforg e Qanda € A (instead of ) ; ¢; ® a;). (Compare this
result with Example 2.67.)
(i) Let p be a prime, and let p, g be relatively prime. Prove
that if A is a p-primary group and a € A, then there exists
x € Awithgx = a.
(i) If D is a finite cyclic group of order m, prove that D/nD is
a cyclic group of order d = (m, n).
(iii) Letm and n be positive integers, and let d = (m, n). Prove
that there is an isomorphism of abelian groups

Iy @I, =1g.
(iv) Let G and H be finitely generated abelian groups, so that
G=A®---®A, and H=B| D--- & By,
where A; and B; are cyclic groups. Compute G ®z H
explicitly.

Hint. G ® 7 H = Zi,j A; ®z Bj. If A; or B; is infinite
cyclic, use Proposition 2.58; if both are finite, use part (ii).

(i) Given Ag, gBg,and 5C, define T(A, B, C) = F/N, where
F is the free abelian group on all ordered triples (a, b, ¢) €
A X B x C,and N is the subgroup generated by all

(arybvc) - (a7 rb, C)7
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(a,bs,c) —(a,b,sc),
(@a+da',b,c)—(a,b,c)—(d,b,0),
(@a,b+1b',c)—(a,b,c)—(a,b,c),
(a,b,c+c’)—(a,b,c)—(a,b,c).

Define h: Ax Bx C — T(A,B,C)byh: (a,b,c) —
a®b®c,wherea ® b® ¢ = (a,b,c) + N. Prove that
this construction gives a solution to the universal mapping
problem for triadditive functions.

(ii) Let R be a commutative ring and let Ay, ..., A,, M be
R-modules, where n > 2. An R-multilinear function is
a function h: A; x --- x A, — M if h is additive in
each variable (when we fix the other n — 1 variables), and
flay,....rai,...,ay) =rf(ay,...,a,...,a,) forall i
and all » € R. Let F be the free R-module with basis
Al X --- X Ay, and define N C F to be the submodule
generated by all the elements of the form

(ay,...,raj,...,ay) —r(ay,...,a,...,a,)
and

(..oai+al,..)—(C..,ai,..)—(...a,...).

Define T(Ay,...,Ay) = F/Nand h: Ay X --- X Ay, —
T(Ay,...,Apby(ay,...,a,) — (ai,...,ay)+N. Prove
that /2 is R-multilinear, and that 7 and T (A, ..., A,) solve
the univeral mapping problem for R-multilinear functions.

(iii) Let R be a commutative ring and prove generalized asso-
ciativity for tensor products of R-modules.

Hint. Prove that any association of A1 ® --- ® A, is also a
solution to the universal mapping problem.

*2.31 Assume that the following diagram commutes, and that the vertical
arrows are isomorphisms.

0 A’ A A" 0
ool
0 B’ B B” 0

Prove that the bottom row is exact if and only if the top row is exact.



96 HoM AND TENSOR CH. 2

*2.32

*2.33

2.34

*2.35

(3 x 3 Lemma) Consider the following commutative diagram in
rMod having exact columns.

0 0 0
v v v

0 Al A A" 0
v v v

0 B’ B B" 0
v v v

0 c’ o c” 0
v V v
0 0 0

If the bottom two rows are exact, prove that the top row is exact; if
the top two rows are exact, prove that the bottom row is exact.
Consider the following commutative diagram in gMod having exact
rows and columns.

A’ A A" 0
v \ i
B/ B B// 0
v v v
C’ C c” 0
v v v
0 0 0

If A” — B” and B — B are injections, prove that C’ — C is
an injection. Similarly, if C’ — C and A — B are injections,
then A” — B’ is an injection. Conclude that if the last column
and the second row are short exact sequences, then the third row
is a short exact sequence and, similarly, if the bottom row and the
second column are short exact sequences, then the third column is a
short exact sequence.

Give an example of a commutative diagram with exact rows and
vertical maps A1, h2, ha, hs isomorphisms

Ay As A3 Ay As
hy \L hz\L \L]M \Lh5
B B, B3 By Bs

for which there does not exist a map h3: A3 — B3 making the
diagram commute.

If A, B, and C are categories, then a bifunctor T: A x B — C as-
signs, to each ordered pair of objects (A, B), where A € ob(.A) and
B € ob(B), an object T(A, B) € ob(C), and to each ordered pair
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*2.37

*2.38
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of morphisms f: A — A’ in Aand g: B — B’ in 3, a morphism
T(f,g): T(A, B) — T(A’, B), such that

(a) fixing either variable is a functor; for example, if A € ob(A),
then Ty = T(A,O): B — C is a functor, where T4 (B) = T (A, B)
and Ta(g) = T(14, 8),

(b) the following diagram commutes:

T(14,
T(A, B) 2248 14 gy

T(f,
T(f,lB)l WA lT(ﬁlB;)

/ / /
T(A', B) m)T(A , B').

(i) Prove that ®: Modg x gMod — Ab is a bifunctor.

(ii) Prove that Hom: gMod x xkMod — Ab is a bifunctor if
we modify the definition of bifunctor to allow contravari-
ance in one variable.

Let R be a commutative ring, and let F be a free R-module.

(i) If mis a maximal ideal in R, prove that (R/m) ®g F and
F/mF are isomorphic as vector spaces over R/m.

(ii) Prove that rank(F) = dim((R/m) QR F)

(iii) If R is a domain with fraction field Q, prove that rank(F) =
dim(Q ®g F).

Assume that a ring R has IBN; that is, if R = R" as left R-
modules, then m = n. Prove that if R = R" as right R-modules,
then m = n.

Hint. If R = R" as right R-modules, apply Homg ((J, R), using
Proposition 2.54(iii).

Let R be a domain and let A be an R-module.

(i) Prove that if the multiplication u,: A — A is an injection
for all r #£ 0, then A is torsion-free; that is, there are no
nonzeroa € A andr € R withra = 0.

(ii) Prove that if the multiplication u,: A — A is a surjection
for all r # 0, then A is divisible.

(iii) Prove that if the multiplication u,: A — A is an isomor-
phism for all » #£ 0, then A is a vector space over O, where
O = Frac(R).

Hint. A module A is a vector space over Q if and only if it
is torsion-free and divisible.

(iv) If either C or A is a vector space over Q, prove that both
C ®r A and Homg(C, A) are also vector spaces over Q.



Special Modules

There are special modules that make Hom and tensor functors exact; namely,
projectives, injectives, and flats.

3.1 Projective Modules

The functors Homg (X, [J) and Homg ([J, Y) almost preserve short exact se-
quences; they are left exact functors. Similarly, the functors [J @ ¥ and
X ®p O almost preserve short exact sequences; they are right exact functors.
Are there any functors that do preserve short exact sequences?

Definition. A covariant functor 7: gkMod — Ab is an exact functor if, for
every exact sequence

0>A5BRAcCcoo.

the sequence

Ta)

— T(A) — T(B) T(C)

is also exact. A contravariant functor 7: RMod — Ab is an exact functor if
there is always exactness of

S 1) 1) I TA) > 0.

In Theorem 2.35, we saw that every left module is a quotient of a free left
module. Here is a property of free modules that does not mention bases.

98 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9_3, (© Springer Science+Business Media LLC 2009



3.1 PROJECTIVE MODULES 99

Theorem 3.1. Let F be a free left R-module. If p: A — A" is surjective,
then for every h: F — A", there exists an R-homomorphism g making the
following diagram commute:

F
g
S

~

AT>A”*>O.

Proof. Let B be a basis of F. For each b € B, the element h(b) € A”
has the form h(b) = p(ap) for some a, € A, because p is surjective; by the
Axiom of Choice, there is a functionu: B — A withu(b) = ap forall b € B.
Proposition 2.34 gives an R-homomorphism g: F — A with

g(b) = ayp forallb € B.

Now pg(b) = p(ap) = h(b), so that pg agrees with h on the basis B; since
(B) = F,wehave pg =h. e

Definition. A lifting ofamaph: C — A”isamapg: C — A with pg = h.
C
f |
A== A"

p

That g is a lifting of & says that h = p,(g), where p, is the induced map
Hompz(C, A) — Hompg(C, A”).

If C is any, not necessarily free, module, then a lifting g of &, should one
exist, need not be unique. Exactness of

0—>kerp—i>A—p>A//,

where i is the inclusion, gives pi = 0. Any other lifting has the form g + i f
for f: C — ker p; this follows from exactness of

0 — Hom(C, ker p) —*> Hom(C, A) -2 Hom(C, A"),

for any two liftings of 4 differ by amap if € imi, = ker p.
We promote this (basis-free) property of free modules to a definition.

Definition. A left R-module P is projective if, whenever p is surjective and
h is any map, there exists a lifting g; that is, there exists a map g making the
following diagram commute:



100 SPECIAL MODULES CH. 3

Theorem 3.1 says that every free left R-module is projective. Is every
projective R-module free? The answer to this question depends on the ring
R. Note that if projective R-modules happen to be free, then free modules are
characterized without mentioning bases.

Let us now see that projective modules arise in a natural way. We know
that the Hom functors are left exact; that is, for any module P, applying
Hompg (P, J) to an exact sequence

i V4
0> A — A A
gives an exact sequence

0 — Homg(P, A") - Homg(P, A) > Homg (P, A”).

Proposition 3.2. A left R-module P is projective if and only if Homg (P, [J)
is an exact functor.

Remark. Since Hompg (P, [J) is a left exact functor, the thrust of the propo-
sition is that p, is surjective whenever p is surjective. <«

Proof. 1If P is projective, then given h: P — A”, there exists a lifting
g: P — A with pg = h. Thus, if h € Homg(P, A”), then h = pg =
p«(g) € im p,, and so p, is surjective. Hence, Hom(P, [J) is an exact func-
tor.

For the converse, assume that Hom(P, [J) is an exact functor, so that p,
is surjective: if 1 € Homg (P, A”), there exists g € Homg (P, A) with h =
p«(g) = pg. This says that given p and h, there exists a lifting g making the
diagram commute; that is, P is projective. e

Proposition 3.3. A left R-module P is projective if and only if every short

exact sequence 0 — A BP0 splits.

Proof. If P is projective, then there exists j: P — B with 1p = p.(j) =
pj; thatis, P is aretract of B. Corollary 2.23 now gives the result.

P

j -
e i/]p
A

BT>P*>O.

Conversely, assume that every short exact sequence ending with P splits.
Consider the diagram
P
%
B——C——>0

p
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with p surjective. Let F be a free left R-module for which there exists a sur-
jective h: F — P (by Theorem 2.35), and consider the augmented diagram

h
F<=——P
gol ! J{f

\

BT>C*>O.

By hypothesis, there is a map j: P — F with hj = 1p. Since F is free,
there is a map go: FF — B with pgo = fh. If we define g = goJ, then
pg = pgoj = fhj = f. Therefore, P is projective. e

We restate half this proposition without mentioning the word exact.
Corollary 3.4. Let A be a submodule of a left R-module B. If B/A is

projective, then A has a complement; that is, there is a submodule C of B
withC = B/Aand B=A & C.

The next result gives a concrete characterization of projective modules.

Theorem 3.5.

(1) A left R-module P is projective if and only if P is a direct summand of
a free left R-module.

(i1) A finitely generated left R-module P is projective if and only if P is a
direct summand of R" for some n.

Proof.

(1) Assume that P is projective. By Theorem 2.35, every module is a quo-
tient of a free module. Thus, there are a free module F and a surjection
g: F — P, and so there is an exact sequence

O—>kerg—>F—g>P—>O.

Proposition 3.3 now shows that P is a direct summand of F'.

Suppose that P is a direct summand of a free module F, so there are
maps g: F — P and j: P — F with gj = 1p. Now consider the

diagram
q
F<=——P
| J
Il lf
i
B——C——=0

p ’
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where p is surjective. The composite fq is a map F — C; since F is
free, it is projective, and so there is a map h: F — B with ph = fq.
Define g: P — B by g = hj. It remains to prove that pg = f. But

pg=rphj=fqj=flp=F.

(i1) Sufficiency follows from part (i). For necessity, let P = (ay, ..., a,). If
{x1,...,x,}is abasis of R", define p: R" — P by x; — a;; the map ¢
is surjective because P is generated by ay, ..., a,. But R"/kerp = P,
so that projectivity shows that P is a direct summand of R"”. e

Corollary 3.6.
(1) Every direct summand of a projective module is itself projective.
(i1) Every direct sum of projective modules is projective.

Proof.

(1) We can use the proof in the second paragraph of Theorem 3.5. Alterna-
tively, we can use the statement of Theorem 3.5 along with the simple
observation that if A is a direct summand of B and B is a direct sum-
mand of C, then A is a direct summand of C.

(i1) Let (P;);cs be a family of projective modules. For each i, there exists
a free module F; with F; = P; @ Q; for some Q; C F;. But EBi F; is
free (a basis being the union of the bases of the F;), and

@1‘3:@(5@@):@&@@@' °

We can now give an example of a commutative ring R and a projective
R-module that is not free.

Example 3.7. The ring R = I is the direct sum of two ideals:
le=J®I,

where
J={I01,[2,[4]} =13 and I={[0],[3]} = L.

Now I is a free module over itself, and so J and 7, being direct summands
of a free module, are projective Ig-modules. Neither J nor / can be free,
however. After all, a (finitely generated) free Ig-module F is a direct sum of,
say, n copies of Ig, and so F has 6" elements. Therefore, J is too small to be
free, for it has only three elements. <«
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The next very general result allows us to focus on countably generated
projectives. Let us first consider an ascending sequence of submodules of a
module P,

O)=PhCSPCPC--,

with P = J,;~¢ Px- Suppose that each P, is a direct summand of P, ; that
is, there are co_mplementary submodules X, with P, = P, & X, for all n.
By induction, we have P,y = X1 & --- & X, (since Py = {0}, we have
P; = Xj). We claim that P = @n X,. Now P = (X,, : n > 0), because
P = Un>0 P, and P,+1 = (X1, ..., X,). To see that the X,, generate their
direct sum, suppose that x,, + --- + x,,, = 0 is a shortest equation with
Xp; € Xp, and ny < --- < ny. Then —x,, € X,,, N X,,_, = {0} (for the Xs
are ascending), and this gives a shorter equation.

The same reasoning applies to an ascending transfinite sequence of sub-
modules (P,) indexed by some well-ordered set (which may as well consist
of ordinals). The reader may prove that if P = [, Py, if each P, is a direct
summand of P41, and if P, = | B<a Pg for every limit ordinal «, then P is
isomorphic to the direct sum €, (Po+1/ Pe). (We have essentially treated the
limit ordinal case in the previous paragraph.)

Proposition 3.8 (Kaplansky). If R is aringand P® Q = @, M;,
where I is any (possibly uncountable) index set and each M; is a countably
generated left R-module, then P is a direct sum of countably generated left

R-modules.

Proof. Write M = @,.; M;. We are going to construct an ascending family
(Sa)aeca of submodules with M = | J,, Sy, where A is a well-ordered set, such
that

(i) if o is a limit ordinal, then Sy = (Jg_,, Sp,
(1) Sg+1/Se 1s countably generated,
(iii) each S, = EBjEJu M for some J, C A,
@iv) So¢ = Py & Qy, where P, = S, N P and Q, = Sy N Q.

Before giving the construction, let us see that such a family can be used to
prove the proposition. Now P, is a direct summand of Sy, by (iv), and S, is
a direct summand of M, by (iii), so that P, is a direct summand of M. Apply
Corollary 2.24(i) to P, € Py4+1 C M to see that P, is a direct summand of
Pa+1. Now

Sa+l/S = (Poz—H @ QOH-I)/(PO[ @ Qa) = (Pa+1/Ptx) @ (Qot-i—l/Qa)’
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by Exercise 2.4 on page 64. It follows that P,/ Py is an image of Sy+1/Sq,
which is countably generated, by (ii); hence, P,1/ P, is countably generated.
If « is a limit ordinal, then

Pa:SamP:(Usﬁ)mP:U(SﬂmP):UPﬂ.

B<a B<a B<a

As in the preamble to this proposition, we have P = @, (Pa+1 / Pa). This
is what we want, for we have already noted that each Py /P, is countably
generated.

Let us construct (Sy). Set Sp = {0}. Let @ > 0, and assume that Sg
has been constructed for each 8 < «; we must construct S,. If « is a limit
ordinal, define S, = Uﬂ<a Sg. Let o = B + 1; we may assume some M is
not contained in Sg (otherwise, Sg = M and we are done). Choose a count-
able generating set of M;, say, x11, X12, X13, ... (the reason for the double
subscript will soon be apparent). As any element of M = P & Q, there is
an expression x;; = p + g with p € P,q € Q. Now each of p and ¢g has
only finitely many nonzero coordinates in the decomposition M = B; M;.
The finitely many M; corresponding to these coordinates generate a count-
ably generated submodule of M; let x31, x22, x23, ... be a countable set of
generators of it. Next, repeat this procedure for x17, getting a new countable
set x31, X32, X33, . ... We have constructed the first three rows of an infinite
matrix. Proceed in this fashion, pursuing the elements along successive diag-
onals in the order x11, x12, X21, X13, X22, X31, . ... Let Iz be the set of all the
coordinates arising from all the x;; in the infinite matrix, define J, = Jg U I,
and define S, = Sg1 to be the submodule of M generated by Sg and all the
xs. Note that M; C S,. The reader may check that the family of these Sy
satisfies (i) through (iv). e

Corollary 3.9. Let R be a ring.

(1) Every projective left R-module P is a direct sum of countably generated
projective left R-modules.

(i1) If every countably generated projective left R-module is free, then every
projective left R-module is free.

Proof. By Theorem 3.5(i), P is a direct summand of a free module. Since
the ring R is a countably generated left R-module (it is even cyclic), Proposi-
tion 3.8 gives P = P jes Pj, where each P; is countably generated, and each
P; is projective, by Corollary 3.6(i). The second statement follows immedi-
ately from the first. e

Classifying projective R-modules is a problem very much dependent on
the ring R. If R is a PID (principal ideal domain: a domain in which every
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ideal is principal), then every submodule of a free module is itself free (Corol-
lary 4.15). It follows from Theorem 3.5 that every projective R-module is free
in this case. A much harder result is that if R = k[x1, ..., x,] is the polyno-
mial ring in n variables over a field &, then every projective R-module is also
free. This question was raised by J.-P. Serre, and it was proved, independently,
by D. Quillen and by A. Suslin (see Theorem 4.100).

There are domains having projective modules that are not free. For exam-
ple, the ring of all the algebraic integers in an algebraic number field K (that
is, K is a field extension of Q of finite degree) is an example of a Dedekind
ring. There are many equivalent definitions of Dedekind rings, one of which
is that they are domains in which every ideal is a projective module. There are
Dedekind rings, even rings of integers in algebraic number fields, that are not
PIDs, and any nonprincipal ideal in a Dedekind ring is a projective module
that is not free.

Here is another characterization of projective modules. Note that if A is
a free left R-module with basis {a¢; : i € I} € A, theneach x € A has a
unique expression x = » ._; r;a;, and the coordinate functions ¢; : x — r;
are R-maps ¢;: A — R.

iel

Proposition 3.10 (Projective Basis). A left R-module A is projective if and
only if there exist elements (a; € A)ic; and R-maps (¢;: A — R);ej such
that

(1) for each x € A, almost all p;(x) = 0,
(ii) for each x € A, we have x = ; _;(p;x)a;.

Moreover, A is generated by {a; : i € 1} C A in this case.

Proof.  Assume that A is projective. There are a free left R-module F and a
surjective R-map ¢ : F — A; by Proposition 3.3, projectivity of A gives an
R-mapgp: A — F withyr¢ = 14. Let{e; : i € I} be abasis of F, and define
a; = Y (e;). Now if x € A, then there is a unique expression ¢(x) = ), rie;,
where r; € R and almost all ; = 0. Define ¢;: A — R by ¢;(x) = r;. Of
course, given x, we have ¢; (x) = 0 for almost all ;. Finally,

x= 1o =y (Y re)
=Y nivie) =Y (giN)y(e) =Y (pix)a.

Since V¥ is surjective, A is generated by {a; = Y (e;) :i € I}.

Conversely, given (a; € A);cr and a family of R-maps (¢;: A — R)ier
as in the statement, define F' to be the free left R-module with basis {¢; : i €
1}, and define an R-map ¥: F — A by ¥ : ¢; > a;. It suffices to find an
R-map ¢: A — F with ¢ = 14, for then A is (isomorphic to) a retract
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(i.e., A is a direct summand of F'), and hence A is projective. Define ¢ by
@(x) =) ;(pix)e;, for x € A. The sum is finite, by condition (i), and so ¢ is
well-defined. By condition (ii),

Vo) =9 ) (pix)ei =) (gin)y(e) =Y (pix)a = x;
thatis, o = 14. e

Definition. If A is a left R-module, then a family (¢; € A);c; and a family
of R-maps (¢;: A — R);¢; satisfying the condition in Proposition 3.10 are
called a projective basis.

Using sheaves, R. Bkouche, “Pureté, molesse, et paracompacité,” C. R.
Acad. Sci. Paris, Sér. A 270 (1970), 1653—-1655, proved the following theo-
rem. Let X be a locally compact Hausdorff space, let C(X) be the ring of all
continuous real-valued functions on X, and let J be the ideal in C (X) consist-
ing of all such functions having compact support. Then X is a paracompact
space if and only if J is a projective C(X)-module. An elementary proof of
Bkouche’s theorem, using projective bases, is due to R. L. Finney and J. Rot-
man, ‘“Paracompactness of locally compact Hausdorff spaces,” Mich. Math.
J. 17 (1970), 359-361.

Definition. Let X = {x; : i € I} be a basis of a free left R-module F, and
let Y = {> ;rjix; : j € J} beasubset of F. If K is the submodule of F
generated by Y, then we say that a module M = F /K has generators X and
relations Y. We also say that the ordered pair (X|Y) is a presentation of M.
An R-module M is finitely presented if there is an exact sequence

R"™ - R" - M — 0,

where m, n € N.

Thus, a module M is finitely generated if it has a presentation (X|Y) in
which X is finite, while M is finitely presented if it has a presentation (X|Y)
in which both X and Y are finite. Example 3.14 displays a finitely generated
module that is not finitely presented.

Proposition 3.11.  Every finitely generated projective left R-module P is
finitely presented.

Proof. Let P = {(ay,...,ay),and let F be the free left R-module with basis
{x1,...,x,}. Defineg: F — Pbygp: Xj — aj,sothere is an exact sequence

0—>ker<p—>Fi>P—>0.

A module is called [free because it has no entangling relations.
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This sequence splits, because P is projective, so that F = P @ ker ¢. Now
ker ¢ is finitely generated, for it is a direct summand, hence an image, of the
finitely generated module F. Therefore, P is finitely presented. e

If M is a finitely presented left R-module, then there is a short exact
sequence
00— K—F—M-—0,

where F' is free and both K and F are finitely generated. Equivalently, M is
finitely presented if there is an exact sequence

F' - F—> M- 0,

where both F’ and F are finitely generated free modules (just map a finitely
generated free module F’ onto K). Note that the second exact sequence does
not begin with “0 —.”

Every finitely presented module is finitely generated, but we will soon see
that the converse may be false. We begin by comparing two presentations of
a module (we generalize a bit by replacing free modules by projectives).

Proposition 3.12 (Schanuel’s Lemma). Given exact sequences

0>K5>P5 M0
and ) )
0K 5P Moo,
where P and P’ are projective, then there is an isomorphism
K®eP =K' oP.
Proof. Consider the diagram with exact rows

i T

0 K P M 0
I |
o |,3 ilM
\i Y

0 K’ P’ M 0.

!

i 7’

Since P is projective, there is amap 8: P — P’ with 7’8 = 7; that is, the
right square in the diagram commutes. A diagram chase, Proposition 2.71,
shows that there is a map o: K — K’ making the other square commute.
This commutative diagram with exact rows gives an exact sequence

0
0—>K—>P€BK/1>P/—>0,
where 0: x — (ix,ax)and ¢ : (u,x’) — Bu —i'x',forx € K,u € P, and
x" € K’. Exactness of this sequence is a straightforward calculation that is
left to the reader; this sequence splits because P’ is projective. e
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Corollary 3.13. If M is finitely presented and
0O0—>K—>F—>M-—0

is an exact sequence, where F is a finitely generated free module, then K is
finitely generated.

Proof.  Since M is finitely presented, there is an exact sequence
0K - F > M-—=>0

with F’ free and with both F’ and K’ finitely generated. By Schanuel’s
Lemma, K @ F' = K' @ F. Now K’ @ F is finitely generated because
both summands are, so that the left side is also finitely generated. But K,
being a summand, is also a homomorphic image of K @ F’, and hence it is
finitely generated. e

We can now give an example of a finitely generated module that is not
finitely presented.

Example 3.14. Let R be a commutative ring containing an ideal / that is not
finitely generated (see Exercise 3.7 on page 114 for an example). We claim
that the R-module M = R/I is finitely generated but not finitely presented.
Of course, M is finitely generated; it is even cyclic. If M were finitely pre-
sented, then there would be an exact sequence 0 - K — F — M — 0 with
F free and both K and F finitely generated. Comparing this with the exact
sequence 0 - I — R — M — 0, as in Corollary 3.13, gives / finitely
generated, a contradiction. Therefore, M is not finitely presented. <«

Finitely generated modules are the most important modules, and they are
intimately related to a chain condition.

Definition. A left R-module M (over some ring R) has ACC (ascending
chain condition) if every ascending chain of submodules
S1I€H S SHBC--
stops; that is, there is an integer n with S, = S;,41 = Sy = -+ -.
Proposition 3.15. The following three conditions are equivalent for a left
R-module M.
(i) M has ACC on submodules.

(i1) M satisfies the maximum condition: every nonempty family F of sub-
modules has a maximal element; that is, there is some Sy € F for which
there isno S € F with Sy C S.
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(iii) Every submodule of M is finitely generated.
Proof.

(1) = (ii) Let F be a family of submodules of M, and assume that F has no
maximal element. Choose S1 € F. Since S is not a maximal element,
there is Sp € F with §1 € S». Now $7 is not a maximal element in
F, and so there is S3 € F with S, C S3. Continuing in this way,
we can construct an ascending chain of submodules that does not stop,
contradicting ACC.

(i) = (iii) Let S be a submodule of M, and define F to be the family of
all the finitely generated submodules contained in S; of course, F # &
(for {0} € F). By hypothesis, there exists a maximal element S* € F.
Now S§* C S because $* € F. If §* is a proper submodule of S, then
thereis s € S with s ¢ S*. The submodule $** = (S*, s) C S is finitely
generated, and so $** € F; but §* C §**, contradicting the maximality
of S*. Therefore, S* = S, and so S is finitely generated.

(ili) = (i) Assume that every submodule of M is finitely generated, and let

S1 € 82 € --- be an ascending chain of submodules. It is easy to see
that the ascending union $* = .| S, is a submodule. By hypothesis,
S* is finitely generated, say, S* = (s, ..., s,). Now s; got into S* by
being in S, for some n;. If N is the largest n;, then S,, € Sy for all i;
hence, s; € Sy forall i, and §* = (s1,...,s;) € Sy. If n > N, then
S* C Sy C S, € S*; therefore, S, = S*, the chain stops, and M has
ACC. o

Corollary 3.16. The following conditions are equivalent for a ring R.
(1) R has ACC on left ideals.

(i1) R satisfies the maximum condition: every nonempty family F of left
ideals in R has a maximal element.

(iii) Every left ideal in R is finitely generated.
Proof. This is the special case of the proposition when M = rR. e

Definition. A ring R is left noetherian if it satisfies any of the equivalent
conditions in Corollary 3.16.

Of course, every PID is noetherian. We will soon prove the Hilbert Basis
Theorem, which says that if R is left noetherian, then so is R[x] (where we
assume the indeterminate x commutes with the coefficients in R). A ring R
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is called right noetherian if every right ideal is finitely generated. Obvi-
ously, every commutative left noetherian ring is right noetherian, and one
omits the adjective left, calling them noetherian. 1f k is a field, then every
finite-dimensional k-algebra R is both left noetherian and right noetherian,
for every left or right ideal is a vector space over k, and so every strictly in-
creasing chain of left (or right) ideals has length < dimg(R). An example of
a ring that is noetherian on one side only is given in Exercise 3.8 on page 114.

Corollary 3.17. Every quotient ring of a left noetherian ring R is left noethe-
rian.

Proof. Let I be a two-sided ideal in R, so that R/[ is a ring. If J is a left
ideal in R/I, then J' = v~'(J) is a left ideal in R, where v: R — R/I
is the natural map. Since R is left noetherian, J’ is finitely generated; say,
J' = (r1,...,r). Hence, J = v(J') is generated by v(r1), ..., v(r,). Thus,
every left ideal in R/ is finitely generated, and so R/ is left noetherian. e

Let Z(x, y) be the ring of all polynomials with integer coefficients in non-
commuting indeterminates x and y. If (y2, yx) is the two-sided ideal gener-
ated by y?, yx, then Dieudonné showed that R = Z(x, y)/(y%, yx) is left
noetherian but not right noetherian (see Lam, A First Course in Noncommu-
tative Rings, p. 23). It follows from Corollary 3.17 that Z(x, y) is not right
noetherian.

Proposition 3.18.

(1) If R is left noetherian, then every submodule of a finitely generated left
R-module M is itself finitely generated.

(i) If R is a PID and an R-module M can be generated by n elements, then
every submodule of M can be generated by n or fewer elements.

Remark. Part (ii) is not true more generally. For example, R = Q[x, y] is
not a PID, and so there is some ideal I that is not principal. Thus, R has one
generator while its submodule / cannot be generated by one element. <«

Proof.

(1) The proof is by inductiononn > 1, where M = (x1, ..., x,). lf n =1,
then M is cyclic, and so Proposition 2.16 gives M = R/I for some
left ideal 1. If S € M, then the correspondence theorem for rings,
Theorem 2.15, gives a left ideal J with / € J € Rand S = J/I. But
R is left noetherian, so that J, and hence J/1, is finitely generated.
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Ifn>1and M = (x1, ..., x,, X541), consider the exact sequence

0 M - M2 M=o,
where M' = (x1,...,x,), M" = M/M’, i is the inclusion, and p is the
natural map. Note that M” is cyclic, being generated by x,11 + M'. If
S C M is a submodule, there is an exact sequence

0—-SNM —S—S/(SNM")— 0.

Now S N M’ C M’, and hence it is finitely generated, by the inductive
hypothesis. Furthermore, S/(SNM') = (S+M')/M' C M/M’, so that
S/(S N M) is finitely generated, by the base step. Using Exercise 2.18
on page 67, we conclude that S is finitely generated.

(i) We prove the statement by induction on n > 1. If M is cyclic, then
M = R/I;if S € M, then S = J/I for some ideal J in R containing
I. Since R is a PID, J is principal, and so J/I is cyclic.

For the inductive step, we refer to the exact sequence
0—SNM - S—S/(SNM)—0

in part (i), where M = (x1, ..., Xp, Xp+1) and M’ = (x1, ..., x,). By
the inductive hypothesis, S N M’ can be generated by n or fewer ele-
ments, while the base step shows that S/(SNM’) is cyclic. Exercise 2.18
on page 67 shows that S can be generated by n + 1 or fewer elements.

[ ]

Corollary 3.19. If R is a left noetherian ring, then every finitely generated
left R-module is finitely presented.

Proof. If M is a finitely generated R-module, then there are a finitely gen-
erated free left R-module F' and a surjection ¢: F — M. Since R is left
noetherian, Proposition 3.18 says that every submodule of F is finitely gener-
ated. In particular, ker ¢ is finitely generated, and so M is finitely presented.

[ ]

In 1890, Hilbert proved the famous Hilbert Basis Theorem, showing that
every ideal in C[xy, ..., x,] is finitely generated. As we shall see, the proof
is nonconstructive in the sense that it does not give an explicit set of genera-
tors of an ideal (nowadays, this is often possible using Grobner bases). It is
reported that when P. Gordan, one of the leading algebraists of the time, first
saw Hilbert’s proof, he said, “Das ist nicht Mathematik. Das ist Theologie!”
(“This is not mathematics. This is theology!”). On the other hand, Gordan
said, in 1899 when he published a simplified proof of Hilbert’s theorem, “I
have convinced myself that theology also has its merits.”
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Lemma 3.20. A ring R is left noetherian if and only if, for every sequence
ai,...,dy, ... of elements in R, there exists m > landry,...,r, € R with
am+1 =riay + -+ rpanp.

Proof.  Assume that R is left noetherian and that ay, . . ., a,, . . . is a sequence
of elements in R. If I, is the left ideal generated by ay, ..., a,, then there is
an ascending chain of left ideals, I € I, € ---. By the ACC, there exists
m > 2 with I,, = I,,4+1. Therefore, a,,+1 € I,+1 = I, and so there are
ri € Rwithapyy1 =ria) + -+ + rpan.

Conversely, suppose that R satisfies the condition on sequences of ele-
ments. If R is not left noetherian, then there is an ascending chain of left
ideals I1 C I, C - - - that does not stop. Deleting any repetitions if necessary,
we may assume that I, C 1,4 for all n. For each n, choose a,+1 € 41
with a,4+1 ¢ I,. By hypothesis, there exist m and r; € R for i < m with
Am+1 = Y -y tiai € Iy. This contradiction implies that R is left noetherian.

[ )

Notation. If R is a ring, not necessarily commutative, then R[x] denotes the
polynomial ring in which the indeterminate x commutes with every element
in R.

Theorem 3.21 (Hilbert Basis Theorem). If R is a left noetherian ring,
then R[x] is also left noetherian.

Proof. (Sarges) Assume that / is a left ideal in R[x] that is not finitely gen-
erated; of course, I # {0}. Define fy(x) to be a polynomial in / of minimal
degree and define, inductively, f;,,11(x) to be a polynomial of minimal degree
inl — (fo,..., fn)- Note that f;,(x) exists for alln > 0;if I — (fo, ..., fn)
were empty, then / would be finitely generated. It is clear that

deg(fo) = deg(f1) = deg(f2) <---.

Let a, denote the leading coefficient of f,,(x). Since R is left noetherian,
Lemma 3.20 applies to give an integer m with a,,4+1 € (ao, ..., an); that is,
there are r; € R with a,, 1 = roag + - - - + rmay,. Define

FH@) = fu1(x) = Y xme =i £ (),

i=0

where d; = deg(f;). Now f*(x) € I — (fo(x),..., fiu(x)); otherwise,

Jm+1(x) € (fo(x), ..., fin(x)). It suffices to see that deg(f™) < deg(fin+1),
for this contradicts f},41(x) having minimal degree among polynomials in /
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that are not in (fy, ..., fm). If fi(x) = a;x% + lower terms, then

m
d, —d;
LA = fura () = Y xWe =y fi(x)
i=0
m
= (am+1xdm+‘ + lower terms) — Zxd'"“_d" 7 (a[xd" + lower terms).
i=0

The leading term being subtracted is thus ) 7" riaix@mil = g, xdnt e

Corollary 3.22.
() Ifk is a field, then k[xy, ..., x,] is noetherian.
(1) The ring Z[xy, ..., x,] is noetherian.

Proof. The proofs are by inductiononn > 1. e

We are now going to show that every left noetherian ring has IBN.

Lemma 3.23. Let R be a ring and let A be a left R-module having ACC. If
@: A — A is surjective, then ¢ is an isomorphism.

Proof. For all n > 0, define K,, = ker¢”; note that gpo = 14, so that
Ko = {0}. Now K,, € K, 41, forif ¢" (x) = 0, then ¢"*!(x) = 0. Thus, there
is an ascending sequence of submodules

KhCKiCKyC---.

Since A has ACC, this sequence stops; let ¢ be the smallest integer such that
K; = K;y1 = K;4o = ---. We claim that t = 0, which will prove the result.
Otherwise, t > 1, and there is x € K, with x ¢ K, _1; that is, ¢’ (x) = 0 and
@' ~1(x) # 0. Since ¢ is surjective, there is ¢ € A with x = ¢(a). Hence,
0 = ¢'(x) = ¢t (a), so that a € K, = K;. Therefore, 0 = ¢'(a) =
o' Np(a)) = ¢'~'(x), a contradiction. Thus, ¢ is an injection, and hence it
is an isomorphism. e

Theorem 3.24. If R is a left noetherian ring, then R has IBN.

Proof. Let A be a free left R-module, and assume that A = R™ = R",
where m > n. If m > n, then there is a surjection ¢: A — A having a
nonzero kernel (just project an m-tuple onto its first n coordinates). Now A
is obviously finitely generated, so that A has the ACC, by Proposition 3.18.
Therefore, ¢ is an isomorphism, by Lemma 3.23, a contradiction. e
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Exercises

3.1 Let M be a free R-module, where R is a domain. Prove that if
rm = 0, where r € R and m € M, then eitherr = 0 orm = 0.
(This is false if R is not a domain.)

*3.2 Let R be a ring and let S be a nonzero submodule of a free right
R-module F. Prove that if @ € R is not a right zero-divisorz, then
Sa # {0}.

3.3 Define projectivity in Groups, and prove that a group G is projec-
tive if and only if G is a free group.

Hint. Recall the Nielsen—Schreier Theorem: Every subgroup of a
free group is free.

*3.4 (i) (Pontrjagin) If A is a countable torsion-free abelian group
each of whose subgroups S of finite rank is free abelian,
prove that A is free abelian (the rank of an abelian group S
is defined as dimg(Q ®z S); cf. Exercise 2.36 on page 97).

Hint. See the discussion on page 103.

(ii) Prove that every subgroup of finite rank in ZN (the product
of countably many copies of Z) is free abelian.
(iii) Prove that every countable subgroup of Z! is free. (In The-
orem 4.17, we will see that ZY itself is not free.)
*3.5 (Eilenberg) Prove that every projective left R-module P has a free
complement; that is, there exists a free left R-module F' such that
P @ F is free.
Hint. If P & Q is free,consider O S P SO PP P ---.

3.6 Let k be a commutative ring, and let P and Q be projective k-
modules. Prove that P ®; Q is a projective k-module.
*3.7 (i) Prove that R = C(R), the ring of all real-valued functions
on R under pointwise operations, is not noetherian.

(i) Recall that f: R — R is a C*°-function if 3" f/dx" exists
and is continuous for all n. Prove that R = C®°(R), the
ring of all C*°-functions on R under pointwise operations,
is not noetherian.

(iii) If £ is a commutative ring, prove that k[ X], the polynomial
ring in infinitely many indeterminates X, is not noetherian.

*3.8 (Small) Let R be the ring of all 2 x 2 matrices [‘g ?] witha € Z

and b, ¢ € Q is aring. Schematically, we can describe R as [é &]
Prove that R is left noetherian, but that R is not right noetherian.

2An element a € R is a zero-divisor if a # 0 and there exists a nonzero b € R with
ab = 0 or ba = 0. More precisely, a is a right zero-divisor if there is a nonzero b with
ba = 0; that is, multiplication r + ra is not an injection R — R.
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*3.9 Let V be a vector space over a field k.
(i) Prove that V is a free k-module.
(ii) Prove that a subset B of V is a basis of V considered as a
vector space if and only if B is a basis of V considered as
a free k-module.
3.10 (i) If Risadomainand I and J are nonzero ideals in R, prove
that I N J # {0}.
(ii) Let R be a domain and let I be an ideal in R that is a free
R-module; prove that [ is a principal ideal.
*3.11 Prove that Homg (P, R) # {0} if P is a nonzero projective left R-
module.

3.12 If P is a finitely generated left R-module, prove that P is projec-
tive if and only if 1p € imv, where v: Homg(P, R) Qg P —
HvomR(P, P) is defined, for all x € P, by f @ x f, where
[y fO)x.

Hint. Use a projective basis.
*3.13 Let R be a commutative ring, and let A and B be finitely generated
R-modules.
(i) Prove that A ®g B is a finitely generated R-module.
(ii) If R is noetherian, prove that Homg (A, B) is a finitely gen-
erated R-module.
(iii) Give an example showing that Homg (A, B) may not be
finitely generated if R is not noetherian.
Hint (Griffith). Let V be an infinite-dimensional vector
space over I, and let R = Z @ V, where (m, v)(m', v) =
(mm’,mv’ + m'v). Then V is an ideal in R that is not
finitely generated, and if A = (R/V)/p(R/V), then
Hompg(A, R) = V as R-modules.

3.2 Injective Modules

There is another type of module that turns out to be interesting.

Definition. A left R-module E is injective if, whenever i is an injection, a
dashed arrow exists making the following diagram commute.

E
fT\g
\\

OHA?B



116 SPECIAL MODULES CH. 3

In words, every homomorphism from a submodule into £ can always be
extended to a homomorphism from the big module into E.

Proposition 3.25. A left R-module E is injective if and only if Hompg (L, E)
is an exact functor.

Proof. If

O—>A—i>B—p>C—>O

is a short exact sequence, we must prove exactness of

0 — Homg(C, E) > Homg(B. E) —— Homg(A, E) — 0.

Since Hompg ([, E) is a left exact contravariant functor, the thrust of the
proposition is that the induced map i* is surjective whenever i is injective. If
f € Homg (A, E), there exists g € Homg (B, E) with f = i*(g) = gi; that
is, the appropriate diagram commutes, showing that E is an injective module.

For the converse, if E is injective, then given f: A — E, there exists
g: B — E with gi = f. Thus, if f € Homg(A, E), then f = gi =i*(g) €
imi*, and so the induced map i* is surjective. Therefore, Hom((J, E) is an
exact functor. e

Compare the next result to Proposition 3.3.

Proposition 3.26. [f a left R-module E is injective, then every short exact

sequence 0 — E LB2c=o0 splits.

Proof.

Since E is injective, there exists ¢: B — E making the diagram commute;
that is, gi = 1g. Exercise 2.8 on page 65 now gives the result. e

The converse of Proposition 3.26 is also true; it is Proposition 3.40.
This proposition can be restated without using the word exact.

Corollary 3.27. If an injective module E is a submodule of a module M,
then E is a direct summand of M: there is a complement S with M = E & S.
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Proposition 3.28.

() If (Ex)kek is a family of injective left R-modules, then [ [, cx Ex is also
an injective left R-module.

(i) Every direct summand of an injective left R-module E is injective.
Proof.
(i) Consider the diagram in which E = [] Ek.
fITE N
~

04>A4l_>B

Let pr: E — Ej be the kth projection, so that py f: A — Ej. Since
E} is an injective module, there is gx: B — Ej with gri = pr f. Now
define g: B — E by g: b — (gi(b)). The map g does extend f, for if
b =ia, then

glia) = (gk(ia)) = (prfa) = fa,

because x = (pix) for every x in the product.

(i1) Assume that E = E| @ E», leti: E1 — E be the inclusion, and let
p: E — Ej be the projection (so that pi = 1g,).

p

fT | 80
|

0 B _ C
J

i
Ey<~<—EI®E
A

The reader should be able to complete the proof using the diagram as a
guide. e

Corollary 3.29. A finite direct sum of injective left R-modules is injective.

Proof. The direct sum of finitely many modules coincides with the direct
product. e

An infinite direct sum of injective left R-modules need not be injective;
indeed, we shall see that all such direct sums are injective if and only if R is
left noetherian (see Proposition 3.31 and Theorem 3.39).

The zero module {0} is injective, but there are no obvious examples of
nonzero injective left R-modules (analogous to free modules as examples of
projective modules). Nevertheless, we are going to see that injective modules
do exist in abundance. We begin with an important result of R. Baer.
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Theorem 3.30 (Baer Criterion). A left R-module E is injective if and only
ifevery R-map f: 1 — E, where I is an ideal in R, can be extended to R.

E
AN
8
fT N
AN

OHI?R

Proof.  Since any left ideal [ is a submodule of R, the existence of an exten-
sion g of f is just a special case of the definition of injectivity of E.
Suppose we have the diagram

E
4
0—=A——>B,

4
where A is a submodule of a left R-module B. For notational convenience,
let us assume that i is the inclusion [this assumption amounts to permitting
us to write a instead of i(a) whenever a € A]. We are going to use Zorn’s
lemma. Let X be the set of all ordered pairs (A’, g’), where A C A’ C B
and g': A’ — E extends f; thatis, g'|A = f. Note that X % & because
(A, f) € X. Partially order X by defining

(A/, g/) f (A//, g//)

tomean A’ € A” and g’ extends g’. The reader may supply the argument that
chains in X have upper bounds in X; hence, Zorn’s lemma applies, and there
exists a maximal element (Ag, gg) in X. If A9 = B, we are done, and so we
may assume that there is some b € B with b ¢ Ay.
Define
I ={reR:rbe Ap}.

It is easy to see that / is a left ideal in R. Define h: I — E by
h(r) = go(rb).

By hypothesis, there is a map 2*: R — E extending h. Finally, define A =
Ao+ (b)and g1: A} — E by

gi(ap + rb) = go(ao) + rh*(1),

where ag € Ag and r € R.

Let us show that g1 is well-defined. If ag+rb = a(+r'b, then (r —r")b =
ay—ag € Ao; it follows that r —r’ € 1. Therefore, go((r —r')b) and h(r —r')
are defined, and we have

go(ay — ao) = go((r —r')b) = h(r —r') = h*(r —r") = (r = rHR*(1).
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Thus, go(ay) — go(ao) = rh*(1) — r'h*(1) and go(ay) + r'h*(1) = go(ao) +
rh*(1), as desired. Clearly, gi(ap) = go(ap) for all ap € A, so that the
map g extends go. We conclude that (Ag, go) < (A1, g1), contradicting the
maximality of (Ag, go). Therefore, Ay = B, the map g is a lifting of f, and
E is injective. e

Proposition 3.31. I R is a left noetherian ring and (Ey)kek is a family of
injective left R-modules, then @, . Ei is an injective left R-module.

Proof. By the Baer Criterion, it suffices to complete the diagram

@keK Ey
fT AN
0 I =R,

where I is a left ideal in R. If x € €, Ex, then x = (e), where ¢; €
Ey; define Supp(x) = {k € K : et # 0}. Since R is left noetherian, /
is finitely generated, say, I = (ay,...,a,). As any element in EBke x Ex,
each faj, for j = 1,...,n, has finite support Supp(fa;) € K. Thus, S =
Ujil Supp(fa;) is a finite set, and so im f € @, ¢ E¢; by Corollary 3.29,
this finite direct sum is injective. Hence, thereis an R-map g': R — @5 E¢
extending f. Composing g" with the inclusion of @, ¢ E¢ into @ cx Ex
completes the given diagram. e

Theorem 3.39 will show that the converse of Proposition 3.31 is true;
if every direct sum of injective left R-modules is injective, then R is left
noetherian.

We generalize the definition of divisible abelian groups to divisible R-
modules.

Definition. Let M be an R-module over a domain R. If r € Randm € M,
then we say that m is divisible by r if there is some m’ € M with m = rm’.
We say that M is a divisible module if each m € M is divisible by every
nonzero r € R.

If R is a domain, r € R, and M is an R-module, then the function
¢r: M — M, defined by ¢,: m +— rm, is an R-map. It is clear that M
is a divisible module if and only if ¢, is surjective for every r # 0.

Remark. One can define divisible left R-modules for every ring R. There
are several different definitions in the literature, but we prefer that given by
Lam, Lectures on Modules and Rings, p. 70. If r € R, define

anng(r) = {a € R : ar = 0}.
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Suppose that M is a left R-module and m € M is divisble by r; i.e., m = rm’
for some m’ € M. Note that if ar = 0, then am = arm’ = 0. Define M
to be divisible if this necessary condition is sufficient: if every m € M is
divisible by r whenever anny (r) C ann(m); that is, whenever ar = 0 implies
am = 0. (This generalizes the definition when R is a domain, for if r # 0,
then anng(r) = {0} and, of course, Om = 0.) A left R-module is divisible if
and only if every R-map f: Rr — M extends to an R-map R — M (Lam,
Ibid., Proposition 3.17). <«

Example 3.32. Let R be a domain.
(1) Frac(R) is a divisible R-module.

(i1) Direct sums and direct products of divisible R-modules are divisible. It
follows that every vector space over Frac(R) is a divisible R-module.

(iii) Every quotient of a divisible R-module is divisible. It follows that ev-
ery direct summand of a divisible R-module is divisible, for direct sum-
mands are quotients (in fact, they are retracts). <«

Lemma 3.33. If R is a domain, then every injective R-module E is a divisi-
ble module.

Proof. Assume that E is injective. Let e € E and let 79 € R be nonzero; we
must find x € E with e = rox. Define f: Rro — E by f(rrg) = re (note
that f is well-defined because R is a domain: rrg = r'rg implies r = r’).
Since E is injective, there exists #: R — E extending f. In particular,

e = f(ro) = h(ro) = roh(l),
so that x = A(1) is the element in E required by the definition of divisible. e

Remark. Lemma 3.33 is true for left R-modules over any ring R if one uses
Lam’s definition of divisible left R-modules. <«

The converse of Lemma 3.33 is true for some domains, but it is false
in general. For example, Theorem 4.24 shows that if a domain R is not a
Dedekind ring, then there exists a divisible R-module that is not injective.

We can now give some examples of injective modules.
Proposition 3.34. Let R be a domain and let Q = Frac(R).
(i) Q is an injective R-module.

(i1) Every vector space E over Q is an injective R-module.
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Proof.

@

(i)

By Baer’s Criterion, it suffices to extend an R-map f: I — Q, where
I is an ideal in R, to all of R. Note first that if @, b € I are nonzero,
then af (b) = f(ab) = bf (a), so that

f(a)/a = f(b)/bin Q for all nonzero a, b € I;

let ¢ € Q denote their common value (note how [ being an ideal is
needed to define c¢: the product ab must be defined, and either factor
can be taken outside the parentheses). Define g: R — Q by

glr)y=rc

for all » € R. It is obvious that g is an R-map. To see that g extends f,
suppose that a € I; then

gla) =ac =af(a)/a = f(a).
It now follows from Baer’s Criterion that Q is an injective R-module.

If R were noetherian, then direct sums of injective R-modules would be
injective, by Proposition 3.31, and the result would follow at once from
part (i). Since we are not assuming that R is noetherian, however, we
must proceed differently; fortunately, a variation of the proof of part (i)
works.

Assume that f: I — E is an R-map from an ideal / to E. For each
nonzero a € I, divisibility of E provides e, € E with f(a) = ae,.
We claim that e, = ¢, for all a,b € I. Since f is an R-map, we
have f(ab) = af(b) = a(bep); similarly, f(ba) = b(aey). But R is
commutative, so that ab = ba and abe, = abey; that is, ab(e, — ep) =
0. Since E is a vector space over Q and ab # 0, we have ¢, = ¢p.
Define f "R—>E by f (r) = rf(1) = re, (for some choice of nonzero
a € I). Then f is an R-map extending f, and so E is injective. e

Remark. If R is a domain with Q = Frac(R), then the proof of Proposi-
tion 3.34(ii) shows that every torsion-free divisible R-module E is injective
(recall that an R-module M is torsion-free if both r € R and m € M nonzero
implies rm # (). However, this observation does not give a more general
result, for every torsion-free divisible R-module is a vector space over Q. <«

Corollary 3.35. Let R be a principal ideal domain.

(1) An R-module E is injective if and only if it is divisible.

(ii)

Every quotient of an injective R-module E is itself injective.
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Remark. This corollary is true for rings R in which every left ideal is prin-
cipal; the proof uses the notion of divisible left R-module. <«

Proof.

(i) We use Baer’s Criterion, Theorem 3.30. Assume that f: [ — E is an
R-map, where [ is a nonzero ideal; by hypothesis, I = Ra for some
nonzero a € I. Since E is divisible, there is ¢ € E with f(a) = ae.
Define h: R — E by h(s) = se for all s € R. It is easy to check
that /2 is an R-map; moreover, h extends f, forif s = ra € I, then
h(s) = h(ra) =rae =rf(a) = f(ra). Therefore, E is injective.

(i1) Since E is injective, it is divisible; hence, if M C E is any submodule,
then E/M is divisible. By part (i), E/M is injective. e

Theorem 2.35 says that every module is a quotient of a projective module
(actually, it is a stronger result: every module is a quotient of a free module).
The next result is the “dual” result for Z-modules: every abelian group can be
imbedded in an injective abelian group.

Corollary 3.36. Every abelian group M can be imbedded as a subgroup of
some injective abelian group.

Proof. By Theorem 2.35, there is a free abelian group F = P; Z; with
M = F/K forsome K C F. Now

M=F/K = (QZBZ,)/K c (@@f)/K,

where we have merely imbedded each copy Z; of Z into a copy Q; of Q.
But Example 3.32 gives each QQ; divisible, hence gives P, Q; divisible,
and hence gives divisibility of the quotient (); Q;)/K. By Corollary 3.35,

(B, Q)/K is injective.

Lemma 3.37. If D is a divisible abelian group, then Homz(R, D) is an
injective left R-module.

Proof.  First of all, Homgz (R, D) is a left R-module, by Proposition 2.54: if
f: R — Danda € R, define (af)(r) = f(ra) for all r € R. To prove
that Homz(R, D) is injective, we show that Homg (L, Homz(R, D)) is an
exact functor. By Corollary 2.77, essentially the adjoint isomorphism, this
functor is naturally isomorphic to Homz (R ® g [J, D), which is the composite
Homz (L], D) o (R ®p ). Since D is Z-injective, by Corollary 3.35, and
R ®p U is naturally isomorphic to the identity functor on gMod, both of
these functors are exact, and so their composite is also exact. e
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Theorem 3.38. For every ring R, every left R-module M can be imbedded
as a submodule of an injective left R-module.

Proof. Regard M as an abelian group, and define ¢ : M — Homyz(R, M) by
m +— @, where ¢, (r) = rm; it is easy to see that ¢ is a Z-homomorphism,

and we now show it is an injection. If ¢, = ¢,/, then rm = ¢, () =

@ (r) = rm’ for all r € R; in particular, this is true for » = 1, and so
/

m=m'.

By Corollary 3.36, there exist a injective abelian group D and an injec-
tive Z-homomorphism i : M — D. Left exactness of Hom gives an injection
iv: Homgz(R, M) — Homgz(R, D), and so the composite i, is an injec-
tive Z-map. It remains to show that i, is an R-map; that is, if a € R and
m € M, then (i,@)(am) = a[(i,@)(m)]. Now (ix@): am +> i@y, Where
iQagm: r + r(am) [the function i merely views the element r(am) € M
as an element of D]. On the other hand, a[(i,¢)(m)] = a(ivp,), where
a(is@m)(r) = (ix@n)(ra) [this is the definition of the left module structure on
Homz(R, D)]. Hence, (i,¢n)(ra) = i(ra)ym = (ra)m, as desired. e

After Proposition 3.54, we will use character modules to give another
proof of Theorem 3.38.

We have seen, in Proposition 3.31, that if R is a left noetherian ring, then
every direct sum of injective left R-modules is injective; we now prove the
COnverse.

Theorem 3.39 (Bass—Papp). If R is a ring for which every direct sum of
injective left R-modules is an injective module, then R is left noetherian.

Proof. We show that if R is not left noetherian, then there are a left ideal
I and an R-map from / to a sum of injectives that cannot be extended to R.
Since R is not left noetherian, Corollary 3.16 gives a strictly ascending chain
of leftideals I} C I, € ---;let I = | I,- We note that /1, # {0} for all n.
By Theorem 3.38, we may imbed 7/, in an injective left R-module E, ; we
claim that E = €, E, is not injective.

Let m,: I — 1/I, be the natural map. For each a € I, note that
my(a) = 0 for large n (because a € I, for some n), and so the R-map
f:1—[[U/1,), defined by

f: at— (ﬂn(a))»

does have its image in €, (I/I,); that is, for each a € I, almost all of
the coordinates of f(a) are 0. Composing with the inclusion @(1/1,) —
@PE, = E, we may regard f as a map [ — E. If there is an R-map
g: R — FE extending f, then g(1) is defined; say, g(1) = (e,). Choose
an index m and choose a,, € I with a,, ¢ I,; since a,, ¢ I,, we have
T (am) # 0, and so g(a,) = f(a,) has nonzero mth coordinate 7, (a,).
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But g(an) = amg(l) = apn(e,) = (amen), so that m, (a,) = aye,. It fol-
lows that e,, # O for all m, and this contradicts g(1) lying in the direct sum
E=@E, e

Here is the converse of Proposition 3.26.

Proposition 3.40. A left R-module E is injective if and only if every short
exact sequence 0 - E — B — C — 0 splits.

Proof. Necessity has already been proved in Proposition 3.26, and so we
only prove sufficiency. By Theorem 3.38, there is an exact sequence 0 —
E — M — M" — 0 with M injective. By hypothesis, this sequence splits,
andso M = E @ M". It follows from Proposition 3.28(ii) that E is injective,
for it is a direct summand of an injective module. e

We can improve this last result by showing that it suffices to consider only
those short exact sequences 0 - A — B — C — 0 with C cyclic.

Lemma 3.41. The diagram with exact row

0

C
:
C

Proof.  Our first guess is to define P = E® B,a’: e+ (e,0),and y': b —
(0, b), but the first square does not commute because (ya, 0) # (0, wa). Let

S ={(ya, —aa) : a € A},
and note that S is a submodule of £ & B. Make new definitions:
P=(E®B)/S, do:er>(e,0)0+S, and y':b+> (0,b)+S.

Now define 8’: P — C by (e, b) + S + Bb. The reader may check that 8’
is well-defined and that the diagram commutes.

It remains to prove that the bottom row is exact. If o’(e) = (e, 0) + S is
zero, then (e, 0) = (ya, —aa) for some a € A. Hence, 0 = —aa, so that
a = 0 because « is an injection; thus, 0 = ya = ¢, and so o’ is an injection.
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Now ima’ C ker B/ because B'a’ = 0. Let us prove the reverse inclusion
ker B’ C ima’. If (e,b) + S € ker B8/, then Bb = O and b € ker B = ima;
that is, b = «a for some a € A. Hence, (¢,b) + S = (e,aa) + S =
(e+ya,0)+S € imd’. Finally, 8’ is surjective, for if ¢ € C, then surjectivity
of B gives ¢ = Bb forsome b € B,andsoc = B'((0,b) + S). e

The construction of the first square in the diagram is called a pushout, and
we will meet it again in Chapter 5.

Proposition 3.42. A left R-module E is injective if and only if every short

exact sequence 0 — E BN B % C = 0inwhich C is cyclic splits.

Remark. A proof of this proposition using Ext is in Lemma 8.15. <«

Proof. If E is injective, then Proposition 3.40 says that the sequence splits
for every (not necessarily cyclic) module C.

For the converse, let I be a left ideal of R and let f: I — E be an R-map.
By Lemma 3.41, there is a commutative diagram with exact rows

0 I —=R R/I 0
iy I
0 E p R/I 0.

/

Since R/1 is cyclic, our hypothesis is that the bottom row splits. Thus, there
isamapg: P — E withga’ = 1g. Now define g: R — E by g = qf’. Itis
easy to see that gi = f, and the Baer criterion shows that E is injective. e

Theorem 3.38 can be improved, for there is a smallest injective module
containing any given module, called its injective envelope.

Definition. Let M and E be left R-modules. Then E is an essential exten-
sion of M if there is an injective R-map «: M — E with S N o (M) # {0}
for every nonzero submodule S € E. If also (M) C E, then E is called a
proper essential extension of M.

The additive group Q is an essential extension of Z; indeed, every inter-
mediate subgroup G (i.e., Z € G C Q) is an essential extension of Z.

Proposition 3.43. A left R-module M is injective if and only if M has no
proper essential extensions.

Proof. Let M be an injective module. If E is an essential extension of M,
then there is an injection «: M — E with a(M) # E with S Na(M) # {0}
for every nonzero submodule S of E. Since M, and hence (M), is injective,
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Corollary 3.27 says that «(M) is a direct summand of E; that is, there is a
submodule S C E with E = a(M) @ S, and so S Na(M) = {0}. But S is
nonzero, because E is a proper extension. This contradiction shows that M
has no proper essential extensions.

Conversely, assume that M has no proper essential extensions. By Theo-
rem 3.38, there exist an injective left R-module E and an injectioni: M —
E. If E is an essential extension of i(M), then i is an isomorphism and
we are done. Otherwise, there exists a nonzero submodule S € FE with
S Ni(M) = {0}. Using Zorn’s lemma, there exists a submodule N C E
maximal such that S € N and N Ni(M) = {0}. If = : E — E/N is the natu-
ral map, then kerw Ni(M) = N Ni(M) = {0}, so that r|i (M) is an injective
R-map. Now Exercise 3.23 on page 130 says that v must also be an injective
R-map; that is, N = kermt = {0}. But § € N is nonzero; this contradiction
shows that £ must be an essential extension of i (M), and this completes the
proof. e

Lemma 3.44. Given a left R-module M, the following conditions are equiv-
alent for a module E 2> M.

(1) E is a maximal essential extension of M; that is, no proper extension of
E is an essential extension of M.

(i1) E is an injective module and E is an essential extension of M.

(iii) E is an injective module and there is no proper injective intermediate
submodule E’; that is, there is no injective E' with M C E' C E.

Proof. 'We may assume that M is not injective, for all three statements are
equivalent in this case, by Proposition 3.43.

(i) = (ii) Since being an essential extension is a transitive relation, by Ex-
ercise 3.20 on page 130, it follows that £ has no proper essential exten-
sions. Proposition 3.43 says that E is an injective module.

(i) = (iii) Assume that E is an injective essential extension of M. If there
exists an injective module E’ with M C E’ C E, then E’ is a direct
summand: £ = E' @ E”, where E” # {0}, BuuM NE’" C E'NE’" =
{0}, and this contradicts E being an essential extension of M.

(iii) = (i) We show that E is a maximal essential extension of M. Let F
be the family of all submodules § C E that are essential extensions
of M. Now F # &, for M € F. Partially order F by inclusion.
By Exercise 3.22 on page 130, chains in F have upper bounds, and so
Zorn’s lemma says that F has a maximal element, say, E’. Now E’
is an essential extension of M that has no proper essential extension
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N C E. Can E’ have an essential extension elsewhere? If there is a
left R-module N that is an essential extension of E’, then consider the
diagram

E ~

iT Nh

N
N

OHE/H.N’

where i and j are inclusions. A map & exists with #j = i, because E
is injective, so that 4j = h|E is an injection. Since N is an essential
extension of E, we have h injective, by Exercise 3.23 on page 130.
Therefore, 1(N) is an essential extension of E’ in F. By maximality of
E’, we have E’ = h(N); that is, E" has no proper essential extensions.
By Proposition 3.43, E’ is injective. But our hypothesis says that there
are no injective intermediate submodules, so that either E/ = M or
E' = E. If E' = M, then M is injective, which has been considered
at the beginning of the proof; if E/ = E, then E is a maximal essential
extension of M. e

Definition. If M is a left R-module, then a left R-module E containing M
is an injective envelope of M, denoted by Env(M), if any of the equivalent
conditions in Lemma 3.44 hold.

Theorem 3.45 (Eckmann-Schopf). Let M be a left R-module.
(1) There exists an injective envelope Env(M) of M.

(ii) If E and E’ are injective envelopes of M, then there exists an R-iso-
morphism ¢ : E — E' that fixes M pointwise.

Proof.

(1) Let Z be an injective left R-module containing M, and construct a
maximal essential extension of M, as in the proof of (iii)) = (i) in
Lemma 3.44.

(ii) Leti: M — E and j: M — E' be inclusions. Since E’ is injective,
there exists an R-map ¢: E — E’ with ¢i = j. Thus, |M = @i is
an injection, and so ¢ is an injection, by Exercise 3.23 on page 130.
Therefore, (E) C E’ is an intermediate injective submodule, so that
@(E) = E’, and ¢ is an isomorphism fixing M pointwise. e
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Remark. One might think that injective envelope is functorial, but this is
not so. Example 5.20 shows that there is no additive functor 7: Ab — Ab
with 7(G) = Env(G) for all G € obj(Ab). <«

Here is an informal definition of duality. The dual of a commutative dia-
gram D is the commutative diagram in which all the arrows in D are reversed;
that is, the corresponding diagram in the opposite category. Some terms are
defined with diagrams; for example, the diagram defining injective modules is
the dual of the diagram defining projective modules. (We will discuss duality
more in Chapter 5 when we will see, in gMod, that kernel and cokernel are
dual, that direct sum and direct product are dual, and that injective and surjec-
tive morphisms are dual; moreover, exact sequence and direct summand are
each self-dual.) Informally, the dual statement of a statement (see Mac Lane,
Categories for the Working Mathematician, pp. 31-32, for a formal definition)
is the new statement in which every noun, adjective, and diagram is replaced
by its dual (when defined). The dual of a theorem may also be a theorem;
if so, there are two possibilities. The proofs may be dual: for example, the
proof that every short exact sequence 0 - A — B — C — 0 with C
projective splits is dual to the proof of Proposition 3.26: every short exact
sequence ) - A — B — C — 0 with A injective splits. However, proofs
may not be dual: for example, the proof that every module is a quotient of a
projective module is not dual to the proof that every module is a submodule
of an injective module. It is also possible that a theorem that holds in kMod
for every ring R may have a false dual. Every left R-module has an injective
envelope, but the dual statement is false in some module categories: Exam-
ple 4.61 shows that a projective cover (the dual of an injective envelope) of a
Z-module may not exist. Writing a module as a quotient of a free module is
the essence of describing it by generators and relations. We may now think of
Theorem 3.38 as dualizing this idea.

Exercises
*3.14 Prove the dual of Schanuel’s Lemma. Given exact sequences
O—)M—i>E—p>Q—>0 and 0—>ML>E/£>Q/—>O,
where E and E’ are injective, then there is an isomorphism
OCE =Q OE.

*3.15 (Schanuel) Let B be a left R-module over some ring R, and con-
sider two exact sequences

O—-K—->P,—>P,_1—>---—>P —Ph—>B—>0
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0-K' -0,—-Q,.1—>--—> 01— Qy— B—0,

where the Ps and Qs are projective. Prove that

K®Q,®Pro 1@ ZEKOP, D0y 1B .

*3.16 Let R be aring with IBN.

3.17

3.18

)

(ii)

(iii)

(@
(i)

()

(i)
(iii)

f0 - F, - --- - Fyp — 0 is an exact sequence

with each F; a finitely generated free R-module, prove that

Yo (=i rank(F;) = 0.

Let0 > Fy, > - —> Fp > M - 0and 0 — F, —
- — Fj; — M — 0 be exact sequences of left R-

modules, where each F; and F ]’ is finitely generated and

free. Prove that

D (=D rank(F;) = Y (—1) rank(F}).

i=0 j=0

The common integer value is called the Euler characteris-
tic of M and is denoted by x (M).

Hint. Use Exercise 3.15.

Let0 - M — M — M” — 0 be an exact sequence
of finitely generated left R-modules. If two of the modules
have an Euler characteristic, prove that the third does also,
and

x(M) = x(M") + x(M").

Hint. Use Corollary 3.13.

Prove that every vector space over a field k is an injective
k-module.

Prove thatif 0 - U — V — W — 0is an exact sequence
of vector spaces, then the corresponding sequence of dual
spaces 0 - W* — V* — U* — (s also exact.

Prove that if a domain R is an injective R-module, then R
is a field.

Prove that I is simultaneously an injective and a projective
module over itself.

Let R be a domain that is not a field, and let M be an
R-module that is both injective and projective. Prove that
M = {0}.

Hint. Use Exercises 2.22 on page 68 and 3.11 on page 115.
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*3.19 (Pontrjagin Duality) If G is a (discrete) abelian group, its Pontrja-
gin dual is the group

G* = Homyz(G, R/7Z).

(More generally, the Pontrjagin dual of a locally compact abelian
topological group G consists of all the continuous homomorphisms
from G into the circle group S' = R/7.)

(@

(ii)
(iii)
(iv)

v)
(vi)

If G is an abelian group and a € G is nonzero, prove that
there is a homomorphism f: G — R/Z with f(a) # 0.
Prove that R/Z is an injective abelian group.

Prove thatif 0 - A — G — B — 0 is an exact sequence
of abelian groups, then so is 0 - B* — G* — A* — (.
If G is a finite abelian group, then G* = Homgz (G, Q/Z).
If G is a finite abelian group, prove that G* = G.

Prove that every quotient group G/H of a finite abelian
group G is isomorphic to a subgroup of G.

Remark. The analogous statement for nonabelian groups
is false: if Q is the group of quaternions, then Q/Z(Q) =
V, where Z(Q) is the center of Q and V is the four-group.
But Q has only one element of order 2 while V has three el-
ements of order 2, so that V is not isomorphic to a subgroup
of Q. Part (vi) is also false for infinite abelian groups: since
Z has no element of order 2, it has no subgroup isomorphic
toZ/2Z =1;. =

*3.20 Being an essential extension is transitive. Let M C E C E| be
submodules of a left R-module E,. If E is an essential extension
of M and E; is an essential extension of E, prove that E is an
essential extension of M.

*3.21

@

(i)

Let M C E be left R-modules. Prove that E is an essential
extension of M if and only if, for every nonzero e € E,
there is ¥ € R withre € M and re # 0.

Let M C E be left R-modules, and let S be a chain of
intermediate submodules; thatis, M C § C E forall S € S
and, if S, S’ € S, either S € S"or S’ € S. Ifeach S € S
is an essential extension of M, use part (i) to prove that
(Uses S is an essential extension of M.

%322 Let M C E’ C E be left R-modules. If both E’ and E are essential
extensions of M, prove that E is an essential extension of E’.
*3.23 Let E be an essential extension of a left R-module M. If ¢: E — N
is an R-map with ¢|M injective, prove that ¢ is injective.

Hint. Consider M N ker ¢.
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3.24 If R is a domain, prove that Frac(R) = Env(R), its injective enve-
lope.

*3.25 Recall that every abelian group G having no elements of infinite or-
der has a primary decomposition: G = P » Gps where p is a prime
and G, = {g € G : order g is some power of p}. In particular, the
p-primary component of G = QQ/Z is called the Priifer group; it is
denoted by Z(p°).

(i) Prove that Z(p®°) is an injective abelian group.
(ii) Prove that the injective envelope Env (I ) is Z(p).

*3.26 (i) If A is the abelian group with the presentation

A= (ap,n>0]pay=0, payr1 = ay),

prove that A = Z(p).

(ii) Give an example of two injective submodules of a module
whose intersection is not injective.

Hint. Define E = A®{0} and E' = ({(an+1,a) : n > 0})
in A A.

3.3 Flat Modules

The next type of module arises from tensor products in the same way that
projective and injective modules arise from Hom.

Definition. If R is a ring, then a right R-module A is flat® if A ®g [Jis an
exact functor; that is, whenever

0B 5BLAB 50

is an exact sequence of left R-modules, then

1 1
0> AorB 2% A2z B 22 A®z B — 0

is an exact sequence of abelian groups. Flatness of left R-modules is defined
similarly.

Because the functors A ® g [1: gRMod — Ab are right exact, we see that
aright R-module A is flat if and only if, whenever i : B’ — B is an injection,
then 14 ®i: A®r B’ — A ®p B is also an injection.

3 This term arose as the translation into algebra of a geometric property of varieties.
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Proposition 3.46. Let R be an arbitrary ring.
(1) The right R-module R is a flat right R-module.

(ii) A direct sum P iM;j of right R-modules is flat if and only each M is
flat.

(iii) Every projective right R-module P is flat.
Proof.

(i) Consider the commutative diagram

A B

o) |

R®rA—— R Q®r B,
1R ®i

wherei: A — Bisaninjection,o: a > 1®a,and7: b — 1®b. Now
both ¢ and t are isomorphisms, by Proposition 2.58, and so 1g ® i =
tio ! is an injection. Therefore, R is a flat module over itself.

(ii) By Exercise 2.24 on page 68, any family of R-maps (f;: U; — V;) ey
can be assembled into an R-map ¢: (P; U; — €D, V;, namely,

@: (uj) = (fju;));

itis easy to see that ¢ is an injection if and only if each f; is an injection.

Leti: A — B be an injection. There is a commutative diagram

(D, M)) ®RA&>(€B]~MJ') ®r B

i L

D, (M; ®r A) ?@j(Mj ®r B),

where ¢: (m; ®a) — (mj @ia), 1 is the identity map on @j M;, and
the downward maps are the isomorphisms of Proposition 2.65. By our
initial observation, 1 ® i is an injection if and only if each 1y, ® i is an
injection; this says that @9 iM; is flat if and only if each M is flat.

(iii)) Combining the first two parts, we see that a free right R-module, being
a direct sum of copies of R, must be flat. Moreover, since a module is
projective if and only if it is a direct summand of a free module, part (ii)
shows that projective modules are always flat. e

The next results will help us recognize whether a given module is flat.
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Lemma 3.47. Let0 — A —> B be an exact sequence of left R-modules,
and let M be a right R-module. If u € ker(1y; ® i), then there are a finitely
generated submodule N € M and an element u’ € N ®g A such that

(1) u' eker(ly ®1),
(i) u = (k @ 14) (W), where k : N — M is the inclusion.

Proof. Letu = ijj ®a; € ker(lyy ® i), wherem; € M and a; € A.
There is an equation in M ®r B,

n
0=Iu@)Hw) =) m;®iaj.
j=1

Let F be the free abelian group with basis M x B, and let S be the subgroup
of F consisting of the relations of F/S = M ®pr B (as in the construction of
the tensor product in Proposition 2.45); thus, S is generated by all elements in
F of the form

(m,b+b)— (m,b) — (m,b),
(m +m’,b) — (m,b) — (m', b),
(mr,b) — (m, rb).

Let0 > S —> F —> M ®@gr B — 0, where v: (m,b) — m ® b. Since
Iy @ i)(u) = ijj ® iaj = 0in M ®r B, we have ijj Qia; =
>« v(my, by) € v(S), where m; € M and b; € B. Define N to be the
submodule of M generated by m1, ..., m, together with the (finite number of)
first coordinates m) . Of course, N is a finitely generated submodule of M. If
we define u’ = Zj mj®ajin NQgrA,then (k@14)u') =) k(m;)®bj =
u. Finally, (Iy ® i)(u’) = 0, for we have taken care that all the relations
making (1y ®1i)(u) = 0 are present in N @ B (identify N ® g B with F'/S’,
where F’ is free with basis N x B). e

Proposition 3.48. If every finitely generated submodule of a right R-module
M is flat, then M is flat.

Proof. 1t suffices to prove that exactness of 0 — A - B gives exactness

of 0 > M Qg A 1M—Q-S;i M ®gr B. If u € ker(lyy ® i), then the lemma

provides a finitely generated submodule N C M and an elementu’ € N Qg A
with u’ € ker(ly ® i) and u = (k ® 14)(u'), where k: N — M is the
inclusion. Now 1y ® i is injective, by hypothesis, so that #’” = 0; moreover,
u= (k®1a)() = 0. Therefore, 1)y ® i is an injection and M is flat. e
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Definition. If R is a domain and M is an R-module, then its forsion* sub-
module is

tM = {m € M : rm = 0 for some nonzero r € R}.

We say that M is a torsion module if t M = M; we say that M is torsion-free
if tM = {0}.

Were R not a domain, then 7 M might not be a submodule. If m, m’ € tM,
then there are nonzero r, v’ € R withrm =0 = r'm’. Now rr’'(m —m’) = 0,
but it is possible that rr’ = 0, and so we cannot conclude thatm — m’ € tM.

For every R-module M over a domain R, there is an exact sequence

O0—>tM —> M — M/tM — 0.

It is easy to check that M/t M is torsion-free, and so every R-module is an
extension of a torsion module by a torsion-free module. Moreover, every
submodule of a torsion-free module is itself torsion-free.

Proposition 3.49. If R is a domain and A is a flat R-module, then A is
torsion-free.

Proof. Let Q = Frac(R). Since A is flat, the functor (J® A is exact. Hence,
exactness of 0 - R — Q gives exactness of 0 > R Qg A — O ®r A. But
R®r A= Aand Q ®g A is torsion-free (it is a vector space over Q). e

Corollary 3.50. If R is a PID, then every torsion-free R-module B is flat.

Proof. If R is a PID, then the Fundamental Theorem says that every finitely
generated R-module M is a direct sum of cyclic modules. In particular, if
M is also torsion-free, then it is a direct sum of copies of R; that is, M is
a free module. Thus, every finitely generated submodule M of B is flat, by
Proposition 3.46, and so B is flat, by Proposition 3.48. e

Corollary 3.51. An R-module A over a PID R is flat if and only if A is
torsion-free.

Proof.  This follows from Proposition 3.49 and Corollary 3.50. e

4There are generalizations of rorsion to rings R that are not domains. For example, call
an element m in a left R-module M a torsion element if there is a nonzero r € R, not
a zero-divisor, with rm = 0. Call M torsion-free if it has no torsion elements. Another
generalization involves torsion theories. If A is an abelian category (defined in Chapter 5),
then a torsion theory is an ordered pair (T, F) of subclasses of obj(.A) that is maximal with
the property that Hom 4 (7, F) = 0 forall T € T and F € F (see Rowen, Ring Theory I).
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Example 3.52. We show that tensor product may not commute with direct
products:

Qez [[L 2 [[(QezlL).

n>2 n>2

The right side is {0} because Q ®z I, = {0} for all n, by Proposition 2.73. On
the other hand, [,., I, contains an element of infinite order: if I, = (a,),
then there is no positive integer m with 0 = m(a,) = (may,); hence, there is
an exact sequence 0 — Z — [],.,I,. Since Q is flat, by Corollary 3.50,
there is exactness of 0 > Q ®7 Z — Q ®z [[,-, In- But Q ®z Z = Q, and
s0 Q ®z l_[nzz I, #{0}. <=

We are now going to give a connection between flat modules and injective
modules (see Exercise 3.19 on page 130).

Definition. If B is a right R-module, define its character module® B* as the
left R-module
B* = Homy(B, Q/Z).

Recall Proposition 2.54: B* = Homg/(B, Q/Z) is a left R-module if one
defines rf, forr € Rand f: B — Q/Z, by rf: b — f(br). We now
improve Proposition 2.42: if i: A” — A and p: A — A” are maps and

0 — Hom(A”, B) AN Hom(A, B) LN Hom(A’, B) is an exact sequence

for every module B, then A’ — A L, A” - 0is an exact sequence.

Lemma 3.53. A sequence of right R-modules

RN N

is exact if and only if the sequence of character modules

'B*

C*—)B*a—*>A*

is exact.

Remark. Note the special cases A = {0} and C = {0}. <«

Proof. If the original sequence is exact, then so is the sequence of character
modules, for the contravariant functor Homgz([J, Q/Z) is exact, because Q/Z
is an injective Z-module, by Corollary 3.35.

We prove the converse.

SIf B is a Z-module, then its character module coincides with its Pontrjagin dual (see
Exercise 3.19 on page 130).
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imog € kerf. Ifx € A and ax ¢ ker§, then fa(x) # 0. By Exer-
cise 3.19(i) on page 130, there is a map f: C — Q/Z with fBa(x) # O.
Thus, f € C* and fBa # 0, which contradicts the hypothesis that «** = 0.

kerp € ima. Ify € kerf and y ¢ ime, then y + im« is a nonzero
element of B/ima. Therefore, there is a map g: B/ima — Q/Z with
g(y +ima) # 0, by Exercise 3.19(1). If v: B — B/im« is the natural map,
define ¢’ = gv € B*; note that g’(y) # 0, for g'(y) = gv(y) = g(y + ima).
Now g’(ima) = {0}, so that 0 = g'a = a™(¢’) and ¢’ € kera® = im 8*.
Thus, g’ = B*(h) for some h € C*; that is, g’ = hB. Hence, g’'(y) = hB(y),
which is a contradiction, for g’(y) # 0, while 28(y) = 0, because y € ker .

Proposition 3.54 (Lambek). A right R-module B is flat if and only if its
character module B* is an injective left R-module.

Proof. The functors Homg(CJ, Homz(B, Q/Z)) = Homg(, B*) and
Homz([J, Q/Z)) o (B ®g [J) are naturally isomorphic, by Corollary 2.77.
If B is flat, then each of the functors in the composite is exact, for Q/Z is
Z-injective; hence, Hompg (L], B¥) is exact and B* is injective.

Conversely, assume that B* is an injective left R-module and A’ — A
is an injection between left R-modules A’ and A. Since Homg (A, B*) =
Hompg (A, Homgz(B, Q/Z)), the (second version of the) adjoint isomorphism,
Theorem 2.76, gives a commutative diagram in which the vertical maps are
isomorphisms.

Hompg (A, B*) Hompg(A’, B¥) ——=0

| |

Homz(B ®r A, Q/Z) —— Homz(B® A', Q/Z) — 0

:l l:

(B ®r A)* (BRRA) —=0

Exactness of the top row now gives exactness of the bottom row. The sequence
0—> B®r A — B ®pg Aisexact, by Lemma 3.53, and this gives B flat. o

We now sketch another proof of Theorem 3.38: every left R-module M
can be imbedded in an injective left R-module. The character module M* =
Homgz (M, Q/Z) is aright R-module, M** is a left R-module, and the R-map
@: M — M**, given by m — ¢, [where ¢,,(f) = f(m) for all f € M*],
is an injection. If F is a free (hence flat) right R-module and F — M* — 0
is exact, there is an exact sequence of left R-modules 0 — M** — F**. The
composite M — M** — F** is an injective R-map of left R-modules, and
F** is an injective left R-module, by Proposition 3.54.
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Lemma 3.55. Given modules (rX,g Ys, Zs), where R and S are rings.
(1) There is a natural transformation in X, Y, and Z,
T =71yxyz7: Homg(Y, Z) ¢ X - Homg(Homg (X, Y), Z),

that is an isomorphism whenever X is a finitely generated free left R-
module.

(1) If X is finitely presented and Z = Q/Z, then
7: Y*®pr X — Homp(X, Y)*
is an isomorphism.
Proof.

(1) Note that both Homg(Y, Z) and Homg (X, Y) make sense, for Y is a
bimodule. If f € Homg(Y, Z) and x € X, define tx y z(f ® x) to be
the S-map Homg (X, Y) — Z given by

xy.z(f®x): g f(gx)).

It is straightforward to check that tx y z is a homomorphism natural in
X, that tx y, 7z is an isomorphism when X = R, and, more generally,
that Ty y z is an isomorphism when X is a finitely generated free left
R-module.

(ii) Consider the following diagram, where F/ — F — X — 0 is an
exact sequence with both F’ and F finitely generated free modules, and

0 = 0,Y.Q/Z-

Y*Qpr F' Y*Qpr F Y*®r X

| | =

Homg (F', Y)* —— Hompg(F, Y)* —— Homg (X, Y)* ——0

0

By the naturality in part (i), this diagram commutes [the middle term is
Y* ®r F = Homz(Y, Q/Z) Q@ F] and the first two vertical maps are
isomorphisms. The top row is exact, because Y* ®g [ is right exact.
The bottom row is also exact, because Hompg ([J, Y)* is the compos-
ite of the contravariant functors Homg (L], Y), which is left exact, and
* = Homgz([J, Q/Z), which is exact. Proposition 2.70 now shows that
the third vertical arrow, 7y : Y* ® g X — Hompg (X, Y)*, is an isomor-
phism.® e

6Proposition 2.72, the Five Lemma, can also be used to prove that ty is an isomor-
phism: just add — O — O at the end of each row, and draw downward arrows 0 — 0
(which are isomorphisms!).
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Theorem 3.56. A finitely presented left R-module B is flat if and only if it is
projective.

Proof.  All projective modules are flat, by Proposition 3.46, and so only the
converse is significant. Since B is finitely presented, there is an exact se-

quence
F'—-F—> B—0,

where both F’ and F are finitely generated free left R-modules. We be-
gin by showing, for every left R-module Y [which is necessarily an (R, Z)-
bimodule], that the map 73 = 13y qz: Y* ®r B — Homg(B,Y)* of
Lemma 3.55 is an isomorphism.

To prove that B is projective, it suffices to prove that Hom(B, UJ) pre-
serves surjections: that is, exactness of A — A” — 0 implies exactness
of Hom(B, A) — Hom(B, A”) — 0 is exact. By Lemma 3.53, it suffices to
show that 0 — Hom(B, A”)* — Hom(B, A)* is exact. Consider the diagram

OHA//*®RB%A*®RB

g Js

0 —— Hom(B, A”)* —— Hom(B, A)*.

Naturality of T gives commutativity of the diagram, while the vertical maps
T are isomorphisms, by Lemma 3.55(ii), for B is finitely presented. Since
A — A” — 0Oisexact, 0 - A" — A* is exact, and so the top row is
exact, because B is flat. It follows that the bottom row is also exact; that is,
0 — Hom(B, A”)* — Hom(B, A”)* is exact, which is what we were to
show. Therefore, B is projective. e

Corollary 3.57. If R is left noetherian, then a finitely generated left R-
module B is flat if and only if it is projective.

Proof.  This follows from the theorem once we recall Proposition 3.19: ev-
ery finitely generated left R-module over a left noetherian ring R is finitely
presented. e

If A is aright R-module and [/ is a left ideal in R, then
Al = {Zajrj L aj eAandrj GI}.
J

Proposition 3.58. The following three statements are equivalent for a right
R-module A.
(1) A is flat.

.. 14®i
(i1) The sequence 0 — A Qg I L84 QR R is exact for every left ideal 1,

where i: I — R is the inclusion.
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Lo
(iii) The sequence 0 — A Qg J A—®>J A ®gr R is exact for every finitely

generated left ideal J, where j: J — R is the inclusion.

Remark. This proposition, mutatis mutandis, also characterizes flat left R-
modules. <«

Proof.

(1) = (i1) If A is flat, then the sequence 0 — A ®g I — A ®p R is exact
for every left R-module /.

(i1) = (iii) This is obvious.

(iii)) = (i) Let I be a left ideal in R. By hypothesis, 0 - A Qr J —
A ®pr R is exact for every finitely generated left ideal / < [, and
so Lemma 3.47 (for left modules instead of right modules) says that

0— AQgrl ﬁ A ®pr R is exact. There is thus an exact sequence
of character modules: (A ®g R)* — (A ®g ID* — 0 and, as in the
proof of Proposition 3.54, the adjoint isomorphism gives exactness of
Hompg (R, A*) — Homg(I, A*) — 0. This says that every map from
any ideal I to A* extends to a map R — A*. Thus, A* is injective, by
the Baer Criterion, and so A is flat, by Proposition 3.54. e

Corollary 3.59. If A is a flat right R-module and I is a left ideal, then the
Z-map 04: A Qg 1 — Al, given by a @ i + ai, is an isomorphism.

Proof. Letk: I — R be the inclusion, and let ¢p4: A ® g R — A be the
isomorphism a ® r > ar of Proposition 2.58. The composite

pa(la®k): AQrl - AQrR— A

is given by a ® i +— ai € R, and its image is Al. Now 14 ® « is an
injection, because A is flat, and so composing it with the isomomorphism ¢4
is an injection. Therefore, the composite 64(14 ® k) is an injection, so that
0a:a ® i+ aiis an isomorphism. e

A quotient of a flat module need not be flat; after all, free modules are
flat, and every module is a quotient of a free module.

Proposition 3.60. Let0 — K — F s A — 0 be an exact sequence
of right R-modules in which F is flat. Then A is a flat module if and only if
K N FI = K1 for every finitely generated left ideal 1.
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Proof. We give a preliminary discussion before proving the lemma. For
every left ideal /, right exactness of J ®r [ gives exactness of

1
K®rl— Forl ¥ A@rl — 0.

By Corollary 3.59, there is an isomorphism 0 : F Qg I — FI with f ®i
fi; of course, O : K ®r I — K1 is a surjection. The following diagram
commutes, where inc is the inclusion and nat is the natural map.

1
K®rl —=FRprl 22 A@rI —>0

|
le lep |y
\i

KI FI - FI/KI ——=(

inc t

By Proposition 2.70, there exists a map y: A ®g [ — FI/KI, given by
of ®i+— fi+ KI,where f € F andi € I; since 6k is a surjection and 6
is an isomorphism, the map y is an isomorphism. Now

o(FI)={p(D_ fjij) : fi € F.ij e I} ={D (ofij} = Al
j ]

Therefore, the first isomorphism theorem provides an isomorphism
8: FI/(FINK) — ¢(FI) = Al,

namely, fi + (FI N K) — @(fi). We assemble these maps to obtain the
composite o

—1 1
FI/KI X5 Aol a1 25 FI/(FINK).

Explicitly,o: fi + KI — fi+(FINK). But KI C FINK,sothato is
the enlargement of coset map of the third isomorphism theorem and, hence,
kero = (FI N K)/KI. Therefore, o is an isomorphism if and only if K1 =
FI N K. Moreover, since the flanking maps y ~! and § ! are isomorphisms,
o is an isomorphism if and only if 8,4 is an isomorphism.

If A is flat, then Lemma 3.59 says that 64 is an isomorphism. Therefore, o
is an isomorphism and K/ = FINK. Conversely, if KI = FINK for every
finitely generated left ideal /, then 64 is an isomorphism, and Proposition 3.58
says that A is flat. e

Here are some more characterizations of flatness.

Lemma 3.61. Let0 — K — F — A — 0 be an exact sequence of right
R-modules, where F is free with basis {x; : j € J}. For each v € F, define
1 (v) to be the left ideal in R generated by the “coordinates” ry,...,r; € R
of v, where v = xjr1 +---+ xjr;. Then A is flat if and only if v € K1 (v)
foreveryv € K.
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Proof. If Aisflatandv € K, thenv € K N FI(v) = KI(v), by Proposi-
tion 3.60.

Conversely, let I be any left ideal, and let v € K N FI. Then I (v) C I,
so the hypothesis gives v € KI(v) € KI. Hence, K N FI C KI. As the
reverse inclusion always holds, Proposition 3.60 says that A is flat. e

Theorem 3.62 (Villamayor). Let0 - K — F — A — 0 be an exact
sequence of right R-modules, where F is free. The following statements are
equivalent.

(1) A is flat.
(i1) Foreveryv € K, there is an R-map 6: F — K with 6(v) = v.

(iii) For every vy, ...,v, € K, thereis an R-map 0: F — K with 0(v;) =
v; forall i.

Proof.

(i) = (ii) Assume that A is flat. Choose a basis {x; : j € J} of F. If
v € K, then I (v) is the left ideal generated by rq, ..., r;, where v =
xj,ri + -+ xjr;. By Lemma 3.61, v € KI(v), andsov = ) ks,
where k, € K and s, € I(v). Hence, s, = ) up;r;, where u,; € R.
Rewrite: v = ) k[r;, where k] = )" kpup; € K,and define0: F — K
by 0(x;,) = klf and 0(x;) = O for all other basis elements x;. Clearly,
O(v) = v.

(i) = (i) Letv e K,andletf: F — K be a map with 6(v) = v. Choose
a basis {x; : j € J}of F, and write v = xj;r1 + --- + xj,r;. Then
v =20 =0(xj)r +---+0(xj;)r, € KI(v). Hence, A is flat, by
Lemma 3.61.

Since (iii) obviously implies (ii), it only remains to prove (ii) = (iii).
The proof is by induction on n. The base step is our hypothesis (ii). Let
Vi, ..., U, € K, where n > 2. There is amap 0,: F — K with 6, (v,) = v,.
By induction, there is amap 0': F — K with 0'[v; — 0,(v;)] = v; — 6, (v;)
foralli =1,...,n — 1. Now define 6: F — K by

O (u) = O (u) + 0"t — 6,(u)]
for all u € F. It is routine to see that O (v;) = v; foralli. e

Here is a variant of Theorem 3.56.



142 SPECIAL MODULES CH. 3

Theorem 3.63. A finitely generated right R-module B is projective if and
only if it is finitely presented and flat.

Proof. Every projective module is flat, by Proposition 3.46; if it is also
finitely generated, then it is finitely presented, by Proposition 3.11.

Let0 - K — F — B — 0 be an exact sequence of right R-modules,
where K, F are finitely generated and F is free. If K = (v1,..., v,), then
Theorem 3.62 gives 0: F — K with 6(v;) = v; for all i (because A is
flat). Therefore, K is a retraction of F, and hence it is a direct summand:
F = K & B. Therefore, B is projective. e

We have seen that direct sums of injective left R-modules are injective if
and only if R is left noetherian. We are going to characterize those rings R
for which direct products of flat left R-modules are flat. However, we will not
complete the proof of this until Chapter 7.

Definition. A ring R is called left coherent if every finitely generated left
ideal is finitely presented.

Example 3.64.
(1) Every left noetherian ring is left coherent.

(i1) If k is a field, then the polynomial ring R = k[X] in infinitely many
indeterminates X is coherent but not noetherian.

(iii) There are left coherent rings that are not right coherent (see Lam, Lec-
tures on Modules and Rings, p. 138).

(iv) A left semihereditary ring is a ring all of whose finitely generated left
ideals are projective. Theorem 4.32 shows that all such rings are left
coherent. <«

Lemma 3.65. Let R be a ring and let A be a right R-module. Then the
following statements are equivalent.

(1) A is flat.
(ii) Whenever Y " ,aijr;; =0, wherea; € A, ri; € R,andi =1, ...,d,
j=14jTj J J
there existaél €A forq=1,...,m, and s4j € R with Zj Sqjrji =0

forallq,iand 77, aysqj = aj forall j.

(iii) Whenever Zj":l ajrj = 0, where a; € A and r; € R, there exist
ag € A, forq =1,....m, and sq; € R with }_; sqjrj = 0 for all g

and y 'y agsqj = a; forall j.
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Proof.

(i) = (ii). Consider a short exact sequence 0 — K g F2 A 0,

where F is a free right R-module, K = ker ¢, and inc is the inclusion.
Choose yi,...,ym € F with ¢(y;) = aj. Define u; = Zj Virji
fori = 1,...,d; note that u; € K, for ¢(u;) = go(zj yirji) =
Zj ajrj; = 0. Since A is flat, Theorem 3.62 gives an R-map 6 : F' — K
with 6 (u;) = u; for all i. Let X be a basis of F, and write

Vi =0 =D x4,
q

where x, € X and 5s,; € R. Define a(’] = ¢(x4); noOw

aj =¢(yj) =e(y; —0(;)

because imf C K = ker ¢, and

aj =@y —0(j) = w(z xqsqj) = Z%%r
q

q

Finally,

0=u; —0(u;) = Zyjrﬁ - 9(2 yf’f'")
—Z j =07
S
- qu@w)

Since the x,; are part of the basis X of I, we have 0 = Zj sq;rji Torall
q, 1, as desired.

(i) = (iii). This is the special case of (ii) withd = 1.

(ili) = (i). We prove that A is flat using Proposition 3.58: if [ is a left ideal,
thenthe map 1, ® A.: A®r I — A Qg R is injective, where A: I — R
is the inclusion. If Zj aj @r; € ker(l, ® 1), where a; € A and
rj € I, then Zjaj ®r; = 0in A ®g R; hence, Zjajrj =0inA
(because A ® g R = A viaa @ r — ar). By hypothesis, there exist
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aj, a,/n € A and 5;; € R with Zj sijrj = 0and ), als;j = aj.
Substituting,

Yoaj@ri=3 (Y dsi) ®r =3 (al @ Yosirs) =0
J J i i J
Therefore, 14 ® A is injective, and so A is flat. e

Theorem 3.66 (Chase). The following are equivalent for a ring R.

(i) Forevery set X, the right R-module R (the direct product of | X | copies

of R) is flat.

(i) Every finitely generated submodule of a free left R-module is finitely

presented.

(iii) R is left coherent.
Proof.
(i) = (ii) Let B be a finitely generated submodule of a free left R-module

G; say, B has generators by, .. ., b,. Since each b involves only finitely
many elements of a basis of G, we may assume that G = R4 so that its
elements are d-tuples. Thus, b; = (rj1,...,rjq) for j =1,...,n. If
F is the free left R-module with basis {x1,...,x,}andif ¢: F — B is
defined by ¢(x;) = b}, then there is an exact sequence

0—>K—>Fi>B—>O,

where K = ker ¢. We must show that B is finitely presented, and so it
suffices to prove that K is finitely generated. Each k € K has a unique
expression

k=ai(k)x; + -+ ap(k)xn,

where a (k) € R is the jth coordinate of k € K C F. Let us view RX
as aright R-module. For j =1, ..., n, define

aj = (aj(k)) € RX.

The kth row in the |K| x d matrix below displays the coordinates of
k € K with respect to the basis x, ..., xg of G, while the jth column
is aj € RK.

ay(k)y  axtk) - agqk)

ai(k)y ax (k) - aq(k’)
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Ifk € K, we have 0 = ¢(k) = a1 (k)b + - -- + a,(k)b, in B; that is,
Zj aj(k)b; = 0forall k € K. View these last equations in B C R?:

0= Zaj(k)(rjl, .. .,l‘jd) = (Zaj(k)rjl, .. .,Zaj(k)l"jd).
J J

J

Thus, all coordinates are 0, and Zj aj(kyrjj =0foralli =1,...,d;
that is, Zj ajrj; = 0 for all i. Since RK is flat, Lemma 3.65 gives
a(’] e RX forg=1,...,m, and sqj € R, such that Zj sqjrji = 0 for
allg,iand ) a;s,; = a; forall . Define

g = qujxj' e F.
J

The first set of equations gives z, € K for all ¢:
P(zq) = qujbj
J
= quj(rﬂ, ey rjd)
J

= (qujrjl,...,qujrjO =0.

J J

To prove that K is finitely generated, it is enough to show that K =
(21, .., zm). Define a, € RX by

a; = (a; (k)).

Rewrite the set of equations ) q aésq j=ajas

aj = (a;(k)) = 3 (@, (k))sg; = (Za;(k)sqj).
q q
Hence a (k) = Zq a;(k)sqj. If k € K, then

k= Zaj (k)xj = Z(Z a;(k)sq.,-)xj = Za(’] (k)zg;
J VA q

that is, K is finitely generated.

=> (iii) This is a special case, for every finitely generated left ideal is a
submodule of the free module R.
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(iii) = (i) We use the criterion of Lemma 3.65(iii) to prove that A = RY is
a flat right R-module. Suppose that

n
Zajrj =0
Jj=1

foraj € R and rj € R. Write a; = (aj(y)). Let I be the left
ideal generated by rq, ..., ry, let F be the free left R-module with basis
X1,..., Xy, define p: F — I by @(x;) = rj, and consider the exact

sequence 0 - K — F —#, I - 0, where K = ker ¢. By hypothesis,
K is finitely generated, say, K = (z1, ..., 2). Since K C F, there are
equations z; = Zj sjjxj, where s;; € R. For each y € Y, define

u(y) =ar(y)xi +---+ay(y)x, € F.
Now ¢(u(y)) = Zj aj(y)r; = 0, for this is the yth coordinate of the

original equation ) j-"zl ajrj = 0. Thus, for each y € Y, we have
u(y) € K =(z1, ..., 2s), and so there are b; (y) € R with
w) =Y bz = > (D bisi ).
i i
Since x1, ..., x, is a basis of F', we may equate coordinates: a;(y) =

> i bi(y)s;j for all j, y. Define b; € RY by b; = (bi(y)); then a; =
- bis;; for all j. Finally, > . s;;ri = ¢(z;) = 0. Therefore, A = RY
i J Jout

isflat. e

Remark. Each of the statements in the theorem is equivalent to every direct
product of flat right R-modules being flat. As we mentioned earlier, it is more
convenient to prove this using the functor Tor (see Theorem 7.9). <«

3.3.1 Purity

Let us consider loss of exactness from a different viewpoint. We have blamed
Aif0— B — Bisexactbut0 — A ®r B’ — A ®r B is not exact.
Tensoring by “good” modules preserves exactness (and we have called them
flat). Perhaps, however, the fault is not in our modules but in our sequences.

Definition. An exact sequence 0 — B’ 2, B = B” — 0 of left R-
modules is pure exact if, for every right R-module A, we have exactness of

1 .
00— AQr B’ A—®>AA®RB — AQ®r B” — 0. Wesay that A\AB' C Bisa
pure submodule in this case.

Every split short exact sequence is pure exact, but the next result shows
that the converse is false.
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Proposition 3.67. A left R-module B" is flat if and only if every exact se-
quence 0 — B’ — B — B" — 0 of left R-modules is pure exact.

Proof. Let - A’ — A — A” — 0 be an exact sequence of right R-
modules. Since tensor is a bifunctor, right exact in each variable, there is a
commutative diagram with exact rows and columns.

A/®RB/4>A/®R34>A/®RBN4>O

i i |

AQrB ——=AQrB—AQrB"——0

J i |

A// ®R B/HA// ®R BHA// ®R BNHO

J | |

0 0 0

Specialize the diagram so that A is a free right R-module and B” is a flat left
R-module; this forces both the third column and the second row to be short
exact sequences. By Exercise 2.33 on page 96, the bottom row is a short exact
sequence for every A”; thatis, 0 — B’ — B — B” — 0 is pure exact.

Conversely, assume that every exact sequence ) - B’ — B — B” — 0
is pure exact; in particular, there is such a sequence with B free. Now take
any short exact sequence 0 —- A" - A — A” — 0 of right R-modules
and form the 3 x 3 diagram as above (now the middle row is a short exact
sequence because B is free and, hence, flat; moreover, all the rows are short
exact sequences). Purity says that the bottom row is a short exact sequence,
and Exercise 2.33 says that the last column is a short exact sequence; that is,
B is flat. e

See Corollary 7.3 for another proof of Proposition 3.67 using Tor.

By Corollary 3.51, an abelian group D is flat if and only if it is torsion-
free. Thus, the sequence 0 — tG — G — G/tG — 0 of abelian groups is
always pure exact even though it may not split (see Exercise 3.31 on page 151).

Here is a variant of Lemma 3.65.

Lemma 3.68. Let A be a finitely presented right R-module with generators
ai, ..., a, and relations Zj ajrji, where i = 1,...,m. If B is a left R-
module with .

Y aj®bj=0 inA®gB,

j=1
then there exist elements h; € B withb; = > rjih; forall j.

Proof. Let us make the statement precise. We assume that F' is a free right
R-module with basis {xi, ..., x,}, that ¢: FF — A is defined by px; = a;,
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. A .
that there is an exact sequence 0 - K — F 4 A > Owith K = ker ¢
generated by ) jXjrji, where A: K — F is the inclusion. Tensoring by B
gives exactness of

KB 2 ForB 2 Acr B — 0.

By hypothesis, Zj x;j ®bj € ker(p ® 1) = im(A ® 1). But every element

of K ®g B has an expression of the form Zij xjrji @ h;, where h; € B. In
particular,

Zx,m _(A®1)met®h —fo (Zrﬂ )

Since F is free on the x;s, every element of F ®g B = @(x;R) @r B has
a unique expression of the form ) jXj ® Bj, where B; € B. It follows that
bj = Zi rjihi forall j. e

Theorem 3.69 (Cohn). Let A: B’ — B be an injection of left R-modules.
Then AB' is a pure submodule of B if and only if. given any commutative
diagram with Fy, F1 finitely generated free left R-modules, there is a map
Fo — B’ making the upper triangle’ commute.

Fi —F
e
b
0——pB — B
Remark. The diagrammatic condition can be restated: if b/, ..., b} € B’
satisfy equations Ab’j. = Y, rjib; for each j, where by,...,b, € B and

rji € R, then there exist i; € B’ with b;. =) ;rjih;forall j. <

Proof.  Assume that A B’ is a pure submodule of B. Let b, ..., b, € B, and
assume there are equations )»b;. = Zi rjib; forall j, wherei =1, ..., m. Let
F be the free right R-module with basis {xi, ..., x,}, and define A = F/K,
where K C F is generated by the m elements > jXjji- Obviously, A is a
finitely presented module generated by {a; = x; + K : i = 1,...,m}. In
A ®gr B, we have

Xj:aj®kb;:zaj®(2rﬂ ,) Z(Zafrﬂ@b) 0.

j i

f F} — Fp were surjective, then commutativity of the square and of the upper triangle
would imply commutativity of the lower triangle.
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Purity says that 1 ® A is injective, so that }_; a; ® b;. =0in A ®g B'. By
Lemma 3.68, there are elements 1} € B" with b, =}, rjih; for all j.

For the converse, we must show that ] @ A: A® B’ — A ® B is an
injection for every A. By Exercise 3.42 on page 152, we may assume that A
is finitely presented, say, with generators «;, ..., a, and relations »_ jajriis
i=1,...,m. Atypical element of A @ B’ can be written as }; a; ® b/j
for b, € B If (1 x2)} ;a; @b, =0in A®g B,is };a; ®b; = 0in
A ®g B’? By Lemma 3.42, there are elements h; € B with )»b;. =Y rjihi
for all j. By hypothesis, there are elements 2} € B’ with b;. =) ;rjih; for
all j. Therefore,

Zaj(g)b; = Zaj@)(Zajrﬁ) = Z(Zajrji)@)h; =0 inA®rB’.
J J i i i

l J

Hence, 1 ® A is an injection, and so AB’ is a pure submodule of B. e

Lemma 3.70. Let0 — B’ —> B -2 B” — 0 be a pure exact se-

quence, where i is the inclusion. If M is a finitely presented left R-module,
then p.: Homg(M, B) — Homg (M, B") is surjective.

Proof.  Since M is finitely presented, there is an exact sequence

f

R™ L5 R 55 M 0.

If ¢ € Homg(M, B”), we construct the commutative diagram with exact
rows:

R g Sy 0

[ [ -
ol 77 It . lw
s s v

0 B’ B —; B” 0.

Since R" is free, hence projective, the map ¢g: R" — B’ can be lifted to
7: R" — B;thatis, a map t exists making the square on the right commute.
Now ptf = ¢gf = 0,sothatimtf C ker p = imi = B’. Thus, if we define
o = tf, then the first square commutes. By Theorem 3.69, pure exactness
gives a map n: R" — B’ with nf = o. Now inf = ioc = tf, so that
(t—in)f = 0. Hence, if we define v’ = 1 —in: R" — B,thenim f C kert’;
thus, v/ induces a map ¥ : M — B with v’ = g (for M = R"/im f). But
pYg = pt’ = p(t —in) = pt = pg. Since g is surjective, we conclude that
pU=¢. o
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Proposition 3.71. Let0 — B’ — B L5 B"” — 0 be an exact sequence of
left R-modules.

(1) If B” is finitely presented, then this sequence is pure exact if and only if
it is split.

(ii) If R is left noetherian and B" is finitely generated, then the sequence is
pure exact if and only if it splits.

Proof.

(i) If we define M = B” and ¢ = 1p~, then Lemma 3.70 provides a map
Y : B” — B with pyy = 1pr.

(i) Every finitely generated module over a noetherian ring is finitely pre-
sented. o

In the theory of Abelian Groups, one calls a subgroup S of a group G a
pure subgroup if S N nG = nS for all n € Z. We now show that this notion
of pure subgroup coincides with that of pure Z-submodule.

Corollary 3.72. Let0 — S 26— G/S — 0 be an exact sequence of
abelian groups, where A is the inclusion. This sequence is pure exact if and
only if S is pure in the sense of abelian groups; that is, S " nG = nS for all
n e 7.

Proof. Necessity is the special case of Theorem 3.69 withn =1 = m.

For the converse, it suffices to prove that 1, @ A: ARz S — A Q7 G is
an injection for every abelian group A. Suppose that A = (a) is cyclic. If A
is infinite cyclic, then A = Z is flat, and 14 ® A is injective. Thus, we may
assume that A has a presentation A = (a | ga) for some ¢ > 0. Now a typical
elementu € A ®z G is Zj kja ® g;, where k; € Z and g; € G. But

=Yy kia®gi =) (a®kjg))=a® (ijg/);
J j /

thatis,u =a®@gforsome g € G. I[fa®s € A®z S lies in ker(1 4 ® A), then
a®s=0in A ®z G, and Lemma 3.68 (withn = 1 = m) gives h € G with
s =qgh € SNgG. But § N gG = ¢S, by hypothesis, so that there is s" € S
withs = gs’. Hence,a ® s =a®qs' =ag®s' =0in A®z S,and 14 @ A
is injective in this case as well.

If A is finitely generated, then it is a direct sum of cyclic groups. Since
tensor product commutes with direct sums, it follows easily that 14 ® A is
injective in this case. The result for general A follows from Lemma 3.47. e
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Thus, if a subgroup S of an abelian group G satisfies S N nG = nS for
all n € 7Z, then the sequence 0 - A®z S > A®z G - A®z (G/S) —
0 is exact for every abelian group A. Corollary 3.72 shows why purity is
so important. For example, suppose that S = (s) is a subgroup of a finite
abelian p-group G, where s has maximal order in G. It is not difficult to
prove that S is a pure subgroup of G, and so Proposition 3.71 says that S is
a direct summand. In other words, we can prove S is a direct summand by
solving equations instead of by constructing a complement. An interesting
result of Kulikov (Fuchs, Infinite Abelian Groups 1, p. 120) is that a pure
exact sequence of abelian groups 0 — S — G — G/S — 0 in which
G/S is a direct sum of cyclic groups must be split. It follows that if G is
finitely generated, then a subgroup S of G is pure if and only if it is a direct
summand. This is false in general, for Exercise 3.31 shows that the torsion
subgroup (which is always pure) need not be a direct summand.

Exercises

3.27 Prove that I, is not a flat Z-module.

3.28 Let k be a commutative ring, and let P and Q be flat k-modules.
Prove that P ®; Q is a flat k-module.

3.29 Let R be a PID, let Q = Frac(R), and let M be a torsion-free R-
module.

(i) Prove that M can be imbedded in Q ®p M.
(ii) Prove that Q @ g M = Env(M), the injective envelope
of M.

3.30 If R is a commutative ring (not necessarily a domain), define

tM = {m € M : rm = 0O for some nonzero r € R}.

(i) Let R = I, and regard R as a module over itself. Prove
that [1] ¢ 1.
(ii) Prove that I is not a submodule of Ig.
Hint. Both [2], [3] € tlg, but [3] — [2] ¢ 1.
*3.31 (i) Let P be the set of all primes in Z. Prove that P
the torsion subgroup of [

peP
peP
(i) Prove that (IT,cp 1))/ (D cp H,,) is divisible.
(iii) Prove that7([],.p I) is notadirect summand of [ ],  I.
*332 Let0 - A — B — C — 0 be an exact sequence of right R-
modules, for some ring R. If both A and C are flat modules, prove
that B is a flat module.
Hint. This result is routine if one uses the derived functor Tor.
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*3,33 Let R be a domain, let 7 be a torsion R-module, and let D be a di-
visible R-module. Prove that T ® g D = {0}. (See Proposition 2.73.)
*3.34 Let B = gB, so that Homg (B, R) is a right R-module. If C is a
left R—module’,\deﬁne v Hompg(B, R) ® g C — Homg(B, C) by
v: f ®c+ f,where f(b) = f(b)cforallb € Bandc € C.
(i) Prove that v is natural in B.
(ii) Prove that v is an isomorphism if B is finitely generated
free.
(iii) If B is a finitely presented left R-module and C is a flat left
R-module, prove that v is an isomorphism.
3.35 A right R-module B is called faithfully flat it

(i) B is a flat module,
(i) for all left R-modules X, if B @ g X = {0}, then X = {0}.

Prove that R[x] is a faithfully flat R-module (if R is not commuta-
tive, then R[x] is the polynomial ring in which the indeterminate x
commutes with each coefficient in R).

3.36 Prove that a right R-module B is faithfully flat if and only if B is
flat and B ® (R/I) # {0} for all proper left ideals I of R.

3.37 (i) Prove that a right R-module B is flat if and only if exact—

ness of any sequence of left R-modules A’ Ao
j 1
implies exactness of B @ A’ 18 B®rA = B®rA”.

(ii) Prove that a right R-module B is faithfully flat if and only

if it is flat and B @ A’ 1® B®rA —> B ®r A” exact

implies A’ — A L5 A” s exact.
3.38 Prove that if B is a faithfully flat module and C is a flat module,
then B @ C is faithfully flat.
3.39 (i) Prove that Q is a flat Z-module that is not faithfully flat.

(ii) Prove that an abelian group G is a faithfully flat Z-module

if and only if it is torsion-free and pG # G for all primes p.

340 Let0 - A — B — C — 0 be an exact sequence of right R-

modules, for some ring R. If both A and C are flat modules and if

one of them if faithfully flat, prove that B is a faithfully flat module.

3.41 Prove that if B = g By is a bimodule that is R-flat, and if C = Cg
is S-injective, then Homg(B, C) is an injective left R-module.

Hint. The composite of exact functors is an exact functor.

*3.42 Prove that an exact sequence 0 — B’ — B — B” — 0 of left R-
modules is pure exact if and only if it remains exact after tensoring
by all finitely presented right R-modules A.
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Hint. That an element lies in ker(A ® g B’ — A ®g B) involves
only finitely many elements of A.

(Kulikov) If H and K are torsion abelian groups, prove that H @7 K
is a direct sum of cyclic groups.

Hint. Use Kulikov’s Theorem: if G is a p-primary abelian group,
then there exists a pure exact sequence 0 - B - G — D —
0 with B a direct sum of cyclic groups and D divisible. Such a
pure subgroup B is called a basic subgroup of G. See Rotman, An
Introduction to the Theory of Groups, p. 327.

If G is a finite abelian group, prove that a subgroup S € G is a
direct summand of G if and only if S is a pure subgroup of G.
Hint. Proposition 3.71.

Let G be an abelian group, and let S € G be a pure subgroup. If
S € H C G, prove that H is a pure subgroup of G if and only if
H/S is a pure subgroup of G/S.



Specific Rings

We consider two general problems in this chapter: if conditions are imposed
on projective, injective, or flat R-modules, how does this affect R; if condi-
tions are imposed on a ring R, how does this affect these special R-modules?
We have already encountered several instances of these questions. A ring R
is left noetherian if and only if every direct sum of injective left R-modules is
injective [Theorem 3.39]. If R is a PID, then an R-module is injective if and
only if it is divisible [Corollary 3.35(ii)], while an R-module is flat if and only
if it is torsion-free [Corollary 3.51] (we will soon see that if R is a PID, then
an R-module is projective if and only if it is free).

4.1 Semisimple Rings

If k is a field, then k-modules are vector spaces. It follows that all k&-modules
are projective (even free, for every vector space has a basis). Indeed, every
k-module is injective and flat as well. We now describe all rings for which
this is true.

Definition. Let R be a ring. A left R-module M is simple (or irreducible)
if M # {0} and if M has no proper nonzero submodules; we say that M
is semisimple (or completely reducible) if it is a direct sum of (possibly in-
finitely many) simple modules.

The zero module is not simple, but it is semisimple, for {0} = P, Si.

154 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9_4, (© Springer Science+Business Media LLC 2009
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Proposition 4.1. A left R-module M is semisimple if and only if every sub-
module is a direct summand.

Proof. If M is semisimple, then M = P jes Sis where every §; is simple.
Given a subset I C J, define S; = @jel Sj. If N is a submodule of M,
we see, using Zorn’s Lemma, that there exists a subset / of J maximal with
St NN = {0}. We claim that M = N & S;, which will follow if we prove that
S; € N+ S forall j € J. This inclusion holds, obviously, if j € 1. If j ¢ I,
then the maximality of I gives (S; +S;)NN # {0}. Thus, s; +s; = n % 0 for
somes; € Sj,s; € Sj,andn € N,sothats; =n—s; € (N+S57)NS;. Now
sj #0,lests; € Sy NN = {0}. Since S; is simple, we have (N + S;) N S; =
Sj;thatis, Sj C N+ S;.

Suppose, conversely, that every submodule of M is a direct summand. We
begin by showing that each nonzero submodule N contains a simple submod-
ule. Let x € N be nonzero; by Zorn’s Lemma, there is a submodule Z € N
maximal with x ¢ Z. Now Z is a direct summand of M, by hypothesis, and
so Z is a direct summand of N, by Corollary 2.24; say, N = Z&@ Y. We claim
that Y is simple. If Y’ is a proper nonzero submodule of Y, then Y =Y @ Y”
and N =Z®Y =ZdY @Y". Either Z® Y or Z ® Y” does not con-
tain x [lestx € (Z®Y')N(Z@Y") = Z], contradicting the maximality
of Z. Next, we show that M is semisimple. By Zorn’s Lemma, there is a
family (Si)rex of simple submodules of M maximal with the property that
they generate their direct sum D = @, _x Sk. By hypothesis, M = D @ E
for some submodule E. If E = {0}, we are done. Otherwise, E = S @ E’
for some simple submodule S, by the first part of our argument. But now the
family {S} U (Sx)kek violates the maximality of (Sk)rck, a contradiction. e

Corollary 4.2. Every submodule and every quotient module of a semisimple
module M is semisimple.

Proof. Let N be a submodule of M. Every submodule of N is a direct
summand of M, by Proposition 4.1, so that Corollary 2.24 shows that every
submodule of N is a direct summand of N; therefore, N is semisimple. A
quotient M /N is semisimple, for M = N & Q for some submodule Q of M.
But M/N = Q, and Q is semisimple, as we have just seen. e

Lemma 4.3. If a ring R is a direct sum of left ideals, say, R = @,.; Li,
then only finitely many L; are nonzero.

Proof. Each element in a direct sum has finite support; in particular, the unit
element can be written as 1 = ej + --- + ¢,, where ¢; € L;. If a € L; for
some j # 1, ..., n,then

a=al=ae;+---+ae, € L;N(L1 ®--- @ Ly) ={0}.
Therefore, L; = {0}, and R=L; ®--- O L,. o
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Definition. A ring R is left semisimple if it is semisimple as a left R-module.

When viewing R as a left R-module, its submodules are its left ideals.
Now a simple submodule is a minimal left ideal, for it is a nonzero ideal con-
taining no proper nonzero left ideals. (Such ideals may not exist; for example,
7 has no minimal left ideals.) By the lemma, a left semisimple ring is a direct

sum of finitely many minimal left ideals.

Example 4.4.

(i) The Wedderburn—Artin Theorem (see Rotman, Advanced Modern Alge-

bra, pp. 562 and 567) says that every left semisimple ring R is (isomor-
phic to) a finite direct product of matrix rings:

R = Mat,, (A}) x --- x Mat,, (A)),

where A; are division rings. Moreover, the division rings A; and the
integers ¢, ny, . .., n; are a complete set of invariants of R.

(i) Every left semisimple ring is also right semisimple, and we call such
rings semisimple, dropping the adjective left or right (Advanced Mod-
ern Algebra, p. 563). Moreover, semisimple rings are left and right
noetherian.

(iii) Maschke’s Theorem (Advanced Modern Algebra, p. 556) says that if G

is a finite group and k is a field, then the group ring kG is semisim-
ple if and only if the characteristic of k does not divide |G|. If k is

algebraically closed, then kG = Mat,, (k) x --- x Mat,, (k) (Molien’s

Theorem, Advanced Modern Algebra, p. 568).

(iv) If k is a field of characteristic 0, then R = k[x]/(x" — 1) is semisimple,

for R = kG, where G is a cyclic group of order n.

(v) A finite direct product of fields is semisimple; in particular, R = I, is

semisimple if and only if # is squarefree. <

Here is the reason we have introduced semisimple rings here.

Proposition 4.5. The following conditions on a ring R are equivalent.

(1) R is semisimple.

(1) Every left (or right) R-module M is a semisimple module.
(iii) Every left (or right) R-module M is injective.
(iv) Every short exact sequence of left (or right) R-modules splits.

(v) Every left (or right) R-module M is projective.
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Proof.

(i) = (i1). Since R is semisimple, it is semisimple as a module over itself;
hence, every free left R-module is a semisimple module. Now M is a
quotient of a free module, by Theorem 2.35, and so Corollary 4.2 gives
M semisimple.

(i) = (iii). If E is a left R-module, then Proposition 3.40 says that E is
injective if every exact sequence 0 - £ — B — C — 0 splits. By
hypothesis, B is a semisimple module, and so Proposition 4.1 implies
that the sequence splits; thus, E is injective.

(ili) = (@v). If 0 - A - B — C — 0 is an exact sequence, then it must
split because, as every module, A is injective (see Corollary 3.27).

(iv) = (v). Given a module M, there is an exact sequence
0—>F —-F—>M-—0,

where F is free. By hypothesis, this sequence splits and F = M & F’.
Therefore, M is a direct summand of a free module, and hence it is
projective, by Theorem 3.5.

(v) = (1). If I is a left ideal of R, then
0—-I1I—-R—R/I >0

is an exact sequence. By hypothesis, R/I is projective, and so this
sequence splits, by Proposition 3.3; that is, / is a direct summand of R.
By Proposition 4.1, R is a semisimple left R-module. Therefore, R is a
left semisimple ring. e

Semisimple rings are so nice that there is a notion of global dimension
of aring R, defined in Chapter 8, which measures how far R is from being
semisimple.

Galois Theory has been generalized from field extensions to extensions of
commutative rings, by Chase, Harrison, and Rosenberg, Galois Theory and
Cohomology of Commutative Rings; see also De Meyer—Ingraham, Separable
Algebras over Commutative Rings. Here is a connection between projective
modules and separable field extensions.

Recall that if L is a commutative k-algebra, then its enveloping algebra is
L = L ®; L; multiplication in L€ is given by

(a®b)a ®b) =aa’ Qbb'.
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Theorem 4.6. If L and k are fields and L is a finite separable extension of k,
then L is a projective L¢-module, where L€ is the enveloping algebra.

Proof. Now L is an (L, L)-bimodule, so that L is an L°-module (Corol-
lary 2.61). It suffices to prove that L ®; L is a direct product of fields, for then
it is a semisimple ring and every module is projective.

Since L is a finite separable extension of &, the Theorem of the Primitive
Element (see Rotman, Advanced Modern Algebra, p. 230) provides an ele-
ment « € L with L = k(a). If f(x) € k[x] is the irreducible polynomial of
o, then there is an exact sequence of k-modules

0= (f) - k[x] - L — 0,

where i is the inclusion, v is a k-algebra map, v: x +— «, and (f) is the
principal ideal generated by f(x). Since k is a field, the vector space L is a
free k-module, and hence it is flat. Thus, the following sequence is exact.

0— Ly (f) 2 Lopkix] 225 Ley L — 0.

Of course, L ®; L = L° (for L is commutative), and it is easily checked that
17 ®v is a k-algebra map; thus, im 17 ®i is an ideal in k[x]®; L. Let L[y] be
the polynomial ring in an indeterminate y, and define 6 : L&®yk[x] — L[y] by
a® g(x) — ag(y); the map 6 is an isomorphism, and the following diagram
is commutative and has exact rows.

00— L& (f) 2L @ k[x] 12— e 0
|
i le ‘
Y

0 ) Lly] Liyl/(f) —= 0.

By Proposition 2.70, there is a k-isomorphism L¢ — L[y]/(f), which is
easily seen to be a k-algebra isomorphism.

Now f, though irreducible over k, may factor in L[y], and separability
says that there are no repeated factors:

for=[]rw.

where the p;(y) are distinct irreducible polynomials in L[y]. The ideals (p;)
are thus distinct maximal ideals in L[y], and the Chinese Remainder Theorem
gives a k-algebra isomorphism

L= LIy)/(f ) = [ [ LI/ (po).-

Since each L[y]/(p;) is a field, L® is a semisimple ring. e
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The converse of Theorem 4.6 is true (see De Meyer-Ingraham, p. 49),
and generalizations of Galois Theory to commutative k-algebras R (where k
is a commutative ring) define R to be separable over k if R is a projective
R¢-module (Chase-Harrison-Rosenberg, Galois Theory and Cohomology of
Commutative Rings).

4.2 von Neumann Regular Rings

‘We have just seen that every R-module is projective (or injective) if and only
if R is semisimple. What if every R-module is flat?

Definition. A ring R is von Neumann regular if, for each r € R, there is
r' e Rwithrr'r =r.

Informally, one may think of r" as a generalized inverse of r.

Example 4.7.
(1) A ring R is a Boolean ring if every element r € R is idempotent; that
is, 7> = r. Boolean rings are von Neumann regular: if » € R, define

r’ = r. Boolean rings are commutative.

(i) Here is a proof that if V is a (possibly infinite-dimensional) vector space
over a field k, then R = Endy(V) is von Neumann regular. Given a
linear transformation ¢: V — V, we have V = kergp & W, for every
subspace of a vector space is a direct summand. Let X be a basis of
ker ¢ and let Y be a basis of W, so that X UY is a basis of V. Now ¢(Y)
is a linearly independent subset (because W N kerg = {0}), and so it
can be extended to a basis ¢(Y) U Z of V. If we define ¢’: V — V by
¢ (p(y)) =yforally € Y and ¢'(z) = O forall z € Z, then ¢’ = ¢.
(Example 2.36 shows that von Neumann regular rings may not have
IBN; on the other hand, the uniqueness part of the Wedderburn—Artin
Theorem shows that semisimple rings do have IBN.) <«

Lemma 4.8. If R is a von Neumann regular ring, then every finitely gener-
ated left (or right) ideal is principal, and it is generated by an idempotent.

Proof. Denote a principal leftideal by Ra = {ra : r € R}. Ifa’ € R satisfies
a = ad’a, then e = aa’ is idempotent; moreover, a € Re and e € Ra, so that
Ra = Re is generated by an idempotent.

To prove that every finitely generated left ideal is principal, it suffices
to prove that / = Ra + Rb is principal. There is an idempotent e with
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Ra = Re; we claim that Re + Rb = Re + Rb(1 — ¢): both e and b lie in
Re+ Rb(1 —e); both e and b(1 —e) lie in Re + Rb. There is an idempotent f
with Rb(1 —e) = Rf,sothat f = rb(1 — e) for some r € R. It follows that
fe=rb(l —e)e = 0. We do not know whether ef = 0, and so we adjust f.
Define g = (1 — ¢) f. Now g is idempotent, for

g=(-ofl-ef=>0-e(f—foof=0-ef’=(—-ef=g.

It is easily checked that ge = 0 = eg and that Rg = Rf, so that Ra + Rb =
Re+ Rg. We claim that Re+ Rg = R(e+ g). Clearly, R(e +g) € Re+ Rg.
For the reverse inclusion, if u, v € R, then (ue + vg)(e + g) = ue* + ueg +
vge + vg2 = ue + vg; hence, Re + Rg € R(e + g). A similar argument
proves that every finitely generated right ideal is principal. e

Theorem 4.9 (Harada). A ring R is von Neumann regular if and only if
every right R-module is flat.

Proof. Assume that R is von Neumann regular and that B is a right R-
module. If 0 - K — F — B — 0 is an exact sequence of right R-
modules with F free, then Lemma 3.60 says that B is flatif K1 = K N FI
for every finitely generated left ideal /. By Lemma 4.8, [ is principal, say,
I = Ra. We must show thatif k € K and k = fa € Fa, thenk € Ka. But
k= fa = faad'a = ka’a € Ka. Therefore, B is flat.

For the converse, take a € R. By hypothesis, the cyclic right R-module
R/aR is flat. Since R is free, Lemma 3.60 applies to the exact sequence
0—aR — R — R/aR — Otogive (aR)I =aRNRI = aRN I forevery
left ideal /. In particular, if / = Ra, then aRa = aR N Ra. Thus, there is
some a’ € R with a = aad’a, and so R is von Neumann regular. e

Corollary 4.10. Every semisimple ring is von Neumann regular.

Proof. If a ring is semisimple, then every module is projective and, hence,
every module is flat. e

4.3 Hereditary and Dedekind Rings

We have seen that assuming every R-module is “special” (projective, injec-
tive, or flat) constrains R. Moreover, interesting rings are characterized in this
way. We now assume that every ideal is special.

Assuming that every left ideal is injective gives nothing new.
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Proposition 4.11.  Every left ideal in a ring R is injective if and only if R is
semisimple.

Proof. The submodules of R are its left ideals. As each left ideal is injective,
it is a direct summand, by Corollary 3.27. Proposition 4.1 now says that R is
a semisimple left R-module; that is, R is a (left) semisimple ring. Conversely,
if R is semisimple, then every left ideal is injective, by Proposition 4.5. e

Definition. A ring R is left hereditary if every left ideal is projective; a ring
R is right hereditary if every right ideal is projective. A Dedekind ring is a
hereditary domain.

Example 4.12.
(i) Every semisimple ring is both left and right hereditary.

(i) Small’s example of a right noetherian ring that is not left noetherian (see
Exercise 3.8 on page 114) is right hereditary but not left hereditary.

(iii) Every PID R is hereditary (for nonzero principal ideals in a domain are
isomorphic to R), and so they are Dedekind rings.

(iv) The ring of integers in an algebraic number field is a Dedekind ring
(Zariski—Samuel, Commutative Algebral, p. 283). Thus, there are Dede-
kind rings that are not PIDs. For example, R = {a + bv/=5:a,b e )
is a Dedekind ring that is not a PID.

(v) If kis a field, then R = k(x, y), the ring of polynomials in noncommut-
ing variables, is both left and right hereditary (see Cohn, Free Rings and
Their Relations, p. 106; every one-sided ideal is a free R-module). This
ring is neither right nor left noetherian, so there exist non-noetherian
hereditary rings. However, Dedekind rings are always noetherian; in
fact, every ideal in a Dedekind ring can be generated by two elements
(Rotman, Advanced Modern Algebra, p. 959).

(vi) If R is a domain, then certain R-algebras, called R-orders, arise in the
theory of integral representations of finite groups (see Reiner, Maxi-
mal Orders). When R is a Dedekind ring, then maximal R-orders are
hereditary rings. <«

The following theorem, well-known for modules over Dedekind rings,
was generalized by Kaplansky for left hereditary rings.
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Theorem 4.13 (Kaplansky). If R is left hereditary, then every submodule
A of a free left R-module F is isomorphic to a direct sum of left ideals.

Proof. Let {xx : k € K} be a basis of F; by the Axiom of Choice, we may
assume that the index set K is well-ordered. Define Fy = {0}, where O is the
smallest index in K and, for each k € K, define

Fr, = @ Rx; and Fi = @ Rx; = F;, ® Rxp.

i<k i<k

It follows that Fo = Rxo. Each element a € A N F has a unique expression
a =b+rxi, where b € Fy andr € R, so that ¢;: A N Fy — R, given by
a +— r, is well-defined. There is an exact sequence

0> ANF,— ANF; — img; — 0.
Since im ¢ is a left ideal, it is projective, and so this sequence splits:
Aﬂfk = (AN Fy) & Cy,

where C; = im¢;. We claim that A = @, g Ci, which will complete the
proof.

(i) A = (Upeg Ck): Since F = e Fy,eacha € A (as any element of
F) lies in some Fy; let u(a) be the smallest index k with @ € F. Define
C = (Upex Cr) € A IfC C A, then J = {ua) :a € A—C} # @.
Let j be the smallest element in J, and let y € A — C have u(y) = j. Now
y € Aﬂfj = (ANF;)®Cj,sothaty = b+c,whereb € ANF;jandc € C;.
Hence,b =y —ce A,b ¢ C (lesty € C), and u(b) < j, a contradiction.
Therefore, A = C = (g Ck)-

(i1) Uniqueness of expression: Suppose thatc|+- - -+c, = 0, where ¢; € Cy,,
ki < -+ < ky, and k; is minimal (among all such equations). Then

c1+--+cep—1=—cp € (AN Fi,) N Cy, = {0}.

It follows that ¢,, = 0, contradicting the minimality of k,,. e

Corollary 4.14. If R is a left hereditary ring, then every submodule S of a
projective left R-module P is projective.

Proof.  Since P is projective, it is a submodule, even a direct summand, of
a free module, by Theorem 3.5. Therefore, S is a submodule of a free mod-
ule, and so S is a direct sum of ideals, each of which is projective, by Theo-
rem 4.13. Therefore, S is projective, by Corollary 3.6(ii). e
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Corollary 4.15. Let R be a PID.

(1) If A is a submodule of a free R-module F, then A is a free R-module
and rank(A) < rank(F).

(ii) If B = (b1, ..., b,) is a finitely generated R-module and B’ C B is a
submodule, then B’ is finitely generated and it can be generated by n or
fewer elements.

Proof.

(i) In the notation of Theorem 4.13, if F has a basis {x; : k € K}, then
A = Dk Cr, where Cy is isomorphic to an ideal in R. Since R
is a PID, every nonzero ideal is isomorphic to R: either C; = {0} or
Cr = R. Therefore, A is free and rank(A) < |K| = rank(F).

(i) Let F be a free R-module with basis {x1, ..., x,}. Define ¢: F — B
by x; — b; for all i, define A = ¢~ (B’), and note that p|A: A — B’
is surjective. By part (i), A is free of rank m < n, and so B’ can be
generated by m elements. e

We remark that part (ii) of Corollary 4.15 may be false for more general
domains. First, if R is a domain that is not noetherian, then it has an ideal /
that is not finitely generated; that is, / is a submodule of a cyclic module that
is not finitely generated. Second, if B can be generated by n elements and
B’ C B is finitely generated, B’ still may require more than n generators. For
example, if k is a field and R = k[x, y], then R is not a PID, and so there is
some ideal / that is not principal; that is, R is generated by one element and
its submodule / cannot be generated by one element.

Corollary 4.16. If R is a PID, then every projective R-module is free.

Proof. 'This follows at once from Corollary 4.15(i), for every projective
module is a submodule (even a summand) of a free module. e

If R is a Dedekind ring, then we have just shown, in Theorem 4.13, that
every finitely generated projective R-module P is (isomorphic to) a direct sum
ofideals: P = I} & - - - ® I,,. This decomposition is not unique: P = F & J,
where F is free and J is an ideal (in fact, J is the product ideal Iy -- - I,).
Steinitz proved that this latter decomposition is unique to isomorphism (see
Rotman, Advanced Modern Algebra, p. 967).

Let us show that a direct product of projectives need not be projective.

Theorem 4.17 (Baer).  The direct product Z" of infinitely many copies of
Z is not free (and, hence, it is not projective).
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Proof. Let us write the elements of ZY as sequences (m,,), where m,, € Z.
It suffices, by Corollary 4.15, to exhibit a subgroup S C ZN that is not free.
Choose a prime p, and define S by

S = {(m,,) € ZN : foreach k > 1, we have pk | m,, for almost all n}l.

Thus, p divides almost all m,,, p? divides almost all m,, and so forth. For
example, s = (1, p, p2, p3, ...) € S. Itis easy to check that S is a subgroup
of ZN. We claim that if s = (m,) € S and s = ps* for some s* € ZY, then
s* € S. If s* = (dy,), then pd, = m,, for all n; since p**! | m,, for almost all
n, we have p* | d,, for almost all n.

If (m,) € S, then so is (¢,m,), where ¢ = =1, so that § is uncount-
able. Were S a free abelian group, then S/pS would be uncountable, for
S = @jeJ C; implies S/pS = @jEJ(Cj/pCj). We complete the proof
by showing that dim(S/pS) is countable, which gives the contradiction S/pS
countable. Lete, = (0,...,0,1,0,...), where 1 is in the nth spot; note that
en € S. We claim that the countable family of cosets {e, + pS : n € N}
spans S/pS. If s = (m,) € S, then almost all m, are divisible by p. Hence,
there is an integer N so that s — Z,]IV:O mpe, = ps*,and s* lies in S. Thus, in
S/pS, the coset s + pS is a finite linear combination of cosets of e,, and so
dim(S/pS) is countable. e

We have just seen that ZY, the direct product of countably many copies
of Z, is not free abelian, but we saw, in Exercise 3.4 on page 114, that every
countable subgroup of ZN is a free abelian group. A theorem of Specker—
Nobeling (see Fuchs, Infinite Abelian Groups 11, p. 175) shows that the sub-
group B of all bounded sequences,

B ={(m,) € ZN : there exists N with |m,| < N for all n},

is a free abelian group (in fact, this is true for Z’ for any index set ).
We are going to show that Corollary 4.14 characterizes left hereditary
rings, but we begin with a lemma.

Lemma 4.18. A left R-module P is projective if and only if every dia-
gram with exact row and with Q injective can be completed to a commutative
diagram; that is, every map f: P — Q" can be lifted. The dual is also true.

T

Q—0"—0.

IFor readers familiar with the p-adic topology, S consists of null-sequences and it is
essentially the p-adic completion of Z.
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Proof. If P is projective, then the diagram can always be completed, with
no hypothesis on Q.

For the converse, we must find a map P — A making the following
diagram commute.

e
Y
0 A A A" 0.

i T

There are an injective module Q and an imbedding o: A — Q, by Theo-
rem 3.38. Enlarge the diagram to obtain

P
J/ f
0—> A —>A—F> 4" —0.
|
IJ/ Ul ““)’ | o
2 v
/ "
0—=A'—>0—>0 0,
where Q” = cokeroi and v is the natural map. By Proposition 2.70, there

exists amap p: A” — Q" making the diagram commute. By hypothesis, the
map pf can be lifted: there exists y: P — Q with vy = pf. We claim that
imy C imo, which will complete the proof (because imo = A). If x € P,
choose @ € A with ta = fx. Then vyx = pfx = pta = voa, so that
yx —oa € kerv = imoi. Hence, there isa’ € A’ with yx —oa = oid’, and
soyx =o(a+id) €imo. e

Theorem 4.19 (Cartan-Eilenberg). The following statements are equiv-
alent for a ring R.

(1) R is left hereditary.
(i1) Every submodule of a projective module is projective.
(iii) Every quotient of an injective module is injective.
Proof.
(i) = (i1) Corollary 4.14.

(i) = (i) R is a free R-module, and so it is projective. Therefore, its sub-
modules, the left ideals, are projective, and R is left hereditary.
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(ili) = (ii) Consider the diagram with exact rows

J

<~ pP'=——0

P P
|

| |
v £

0

Q// >0

AN g
hoN

8
N

k

¥

)

where P is projective and Q is injective. By Lemma 4.18, it suffices
to find a map g: P — Q with rg = f. Now Q" is injective, by
hypothesis, so that there exists a map h: P — Q" giving commutativ-
ity: hj = f. Since P is projective, there is a map k: P — Q with
rk = h. The composite g = kj: P’ — P — Q is the desired map, for
rg=rkj)=nhj=f.

(i1) = (iii) Dualize the proof just given, using the dual of Lemma 4.18. e

We can characterize noetherian hereditary rings in terms of flatness.

Proposition 4.20. If R is a left noetherian ring, then every left ideal is flat if
and only if R is left hereditary.

Proof.  Since R is left noetherian, every left ideal 7 is finitely presented,
and so [ flat implies that it is projective, by Corollary 3.57. Hence, R is
left hereditary. Conversely, if R is left hereditary, then every left ideal is
projective, and so every left ideal is flat, by Proposition 3.46. e

Let us now show that our definition of Dedekind ring coincides with more
classical definitions.

Definition. Let R be a domain with Q = Frac(R). An ideal I is invertible
if there are elements ay, ..., a, € I and elements g1, ..., g, € Q with

(1) ¢l C Rforalli =1,...,n,
() 1=3", qgiai.

For example, every nonzero principal ideal Ra is invertible: define a; = a
and g1 = 1/a. Note that if I is invertible, then I # (0). We show that
I = (ai,...,a,). Clearly, (aj,...,a,) < I. For the reverse inclusion,
letb € I. Now b = bl = Y (bgi)a;; since bq; € g;I < R, we have
I C(ay,...,ay).
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Remark. If R is a domain and Q = Frac(R), then a fractional ideal is a
finitely generated nonzero R-submodule of Q. All the fractional ideals in Q
form a commutative monoid under the following multiplication: if I, J are
fractional ideals, their product is

IJ:{Zakyk:akeIandykeJ}.
k

The unit in this monoid is R. If I is an invertible ideal and /="' is the R-
submodule of Q generated by q1, ..., g,, then ™! is a fractional ideal and

IIT'=R=1""1

[one can show that 1 ~! = Homg (1, R)]. We will soon see that every nonzero
ideal in a Dedekind ring R is invertible, so that the monoid of all fractional
ideals is an abelian group (which turns out to be free with basis all nonzero
prime ideals). The class group of R is defined to be the quotient group of this
group by the subgroup of all nonzero principal ideals. <«

Proposition 4.21. If R is a domain, then a nonzero ideal I is projective if
and only if it is invertible.

Proof. If I is projective, then Proposition 3.10 says that / has a projec-
tive basis: there are (axy € [)kegx and R-maps (¢x: I — R)ieg such that,
(i) for each b € I, almost all gx(b) = 0, (ii) for each b € I, we have

b =7 ek (@xb)ak.
Let Q = Frac(R). If b € I and b # 0, define gx € Q by

qk = ¢k(b)/b.

Note that g does not depend on the choice of nonzero b: if b” € I is nonzero,
then b'g (b) = @i (b'b) = by (b'), so that ¢ (') /b’ = ¢ (b)/b. Tt follows
that gxI € R for all k: if b € I, then gxb = [pi(b)/b]b = ¢r(b) € R.
By condition (i), if » € I, then almost all ¢x(b) = 0. Since g = ¢r(b)/b
whenever b # 0, there are only finitely many (nonzero) gi. Discard all a; for
which g, = 0. Condition (ii) gives, for b € I,

b=> (b =Y (qib)a = b(Z Qkak>-

Cancel b from both sides to obtain 1 = ) gxak. Thus, I is invertible.

Conversely, if [ is invertible, there are elements a;,...,a, € [ and
q1,---,qn € Q, as in the definition. Define ¢x: I — R by b — gib (note
that gxb € g1 C R). If b € I, then

Z(‘Pkb)ak = Z qrbar = b Z grax = b.

Therefore, I has a projective basis and, hence, I is a projective module. e
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Corollary 4.22. A domain R is a Dedekind ring if and only if every nonzero
ideal in R is invertible.

Proof. This follows at once from Proposition 4.21. e

Corollary 4.23. Every Dedekind ring is noetherian.
Proof. Invertible ideals are finitely generated. e

We can now generalize Corollary 3.35 from PIDs to Dedekind rings.

Theorem 4.24. A domain R is a Dedekind ring if and only if every divisible
R-module is injective.

Proof.  Assume that every divisible R-module is injective. If E is an injective
R-module, then E is divisible, by Lemma 3.33. Since every quotient of a
divisible module is divisible, every quotient E” of E is divisible, and so E” is
injective, by hypothesis. Therefore, R is a Dedekind ring, by Theorem 4.19.

Conversely, assume that R is Dedekind and that E is a divisible R-module.
By the Baer Criterion, it suffices to complete the diagram

~
s
N
mnc
where [ is an ideal and inc is the inclusion. Of course, we may assume that
I is nonzero, so that [ is invertible: there are elements a;,...,a, € I and
qi, ..., qn € Frac(R) with g;1 € Rand 1 = ), g;a;. Since E is divisible,
there are elements ¢; € E with f(a;) = a;e;. Note, for every b € I, that

f(b) = f(z Qiaib) = (@ib) f(a) =) (qiblaiei =b Y (qiae;.

Hence, if we define e = ), (g;a;)e;, thene € E and f(b) = be forall b € I.
Now define g: R — E by g(r) = re; since g extends f, the module E is
injective. e

Lemma 4.25. If R is a unique factorization domain, then a nonzero ideal 1
is projective if and only if it is principal.

Proof.  Every nonzero principal ideal / = (b) in adomain R is isomorphic to
R viar +— rb. Thus, I is free and, hence, projective. Conversely, suppose that
R is a UFD. If I is a projective ideal, then it is invertible, by Proposition 4.21.
There are elements a;,...,a, € [ and q1,...,q, € Q with 1 = >, gia;
and g;I € R for all i. Write g; = b; /c; and assume, by unique factorization,
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that b; and ¢; have no nonunit factors in common. Since (b;/c;)a; € R for
Jj=1,...,n,wehavec; | a; foralli, j. We claim that I = (c), where ¢ =
lem{cy, ..., cy}. Note that ¢ € I, forc = ¢Y_bja;i/ci = Y (bic/ci)a; € I,
for (bijc/c;) € R. Hence, (c¢) C I. For the reverse inclusion, ¢; | a; for all
i, j implies ¢ | aj forall j,and soa; € (c) forall j. Hence, I C (c). e

Theorem 4.26. A Dedekind ring R is a unique factorization domain if and
only ifit is a PID.

Proof. Every PID is a UFD. Conversely, if R is a Dedekind ring, then every
nonzero ideal / is projective. Since R is a UFD, [ is principal, by Lemma 4.25,
andso RisaPID. e

4.4 Semihereditary and Priifer Rings

We now investigate rings in which all finitely generated ideals are special.

Definition. A ring R is left semihereditary if every finitely generated left
ideal is projective. A semihereditary domain is called a Priifer ring.

Example 4.27.

(1) Every left hereditary ring is left semihereditary (of course, these notions
coincide for left noetherian rings).

(i) Chase gave an example of a left semihereditary ring that is not right
semihereditary (see Lam, Lectures on Modules and Rings, p. 47). A
theorem of Small says that a one-sided noetherian ring is left semihered-
itary if and only if it is right semihereditary (see Lam, p. 268).

(iii) Every von Neumann regular ring is both left and right semihereditary.
By Lemma 4.8, every finitely generated left (or right) ideal / is prin-
cipal; say, I = (a). If aa’a = a, the map ¢: R — I, defined by
@(r) = ra’a, is aretraction. Therefore, I is a direct summand of R and,
hence, I is projective. <

Definition. A ring R is a Bézout ring if it is a domain in which every finitely
generated ideal is principal.

It is clear that every Bézout ring is a Priifer ring; i.e., it is semihereditary.
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Example 4.28.

(i) A valuation ring is a domain R in which, for all a, b € R, eithera | b
or b | a. Every valuation ring is a Bézout ring.

(i) A domain R is a Priifer ring if and only if, for every maximal ideal
m, the localization Ry, is a valuation ring (see Kaplansky, Commutative
Rings, p. 39).

(iii) Let X be a noncompact Riemann surface, and let R be the ring of all
complex-valued holomorphic functions on X. Helmer [see “Divisibil-
ity properties of integral functions,” Duke Math J. 6 (1940), 345-356]
proved that R is a Bézout ring.

(iv) The ring of all algebraic integers (in C) is a Bézout ring (see Kaplansky,
Commutative Rings, p. 72). <

Proposition 4.29. If R is a left semihereditary ring, then every finitely gen-
erated submodule of a free module is a direct sum of a finite number of finitely
generated left ideals.

Proof. Let F be a free left R-module, let {x; : k € K} be a basis, and let
A = (ay,...,ay) be a finitely generated submodule of F. Each a;, when
expressed as a linear combination of the xi, has finite support, so that X =
(U supp(ay) is finite and A € (X). Now (X) is a free submodule of F, and
so we may assume that F' is finitely generated with basis {xy, ..., x,}.

We prove, by induction on n > 1, that A is (isomorphic to) a direct sum
of finitely generated left ideals. If n = 1, then A is isomorphic to a finitely
generated left ideal. If n > 1, define B = AN (Rx; + --- 4+ Rx,—_1); by the
inductive hypothesis, B is a direct sum of a finite number of finitely generated
left ideals. Now each a € A has a unique expression of the form a = b+ rx,,
where b € B and r € R; define ¢: A — R by a > r, and note that im ¢ is a
finitely generated left ideal in R. There is an exact sequence 0 - B — A —
im ¢ — 0, and this sequence splits because im ¢ is projective: A = B@im ¢.
Therefore, A is a direct sum of finitely many finitely generated left ideals. e

The reader has probably observed that the proof just given is merely that
of Theorem 4.13 stripped of its transfinite apparel. Albrecht [see “On pro-
jective modules over a semihereditary ring,” Proc. AMS 12 (1961), 638-639]
proved that if R is left semihereditary, then every (not necessarily finitely gen-
erated) projective R-module is a direct sum of finitely generated left ideals.

Proposition 4.30 (Albrecht). A ring R is left semihereditary if and only
if every finitely generated submodule A of a projective left R-module P is
projective.



4.4 SEMIHEREDITARY AND PRUFER RINGS 171

Proof. Now P is a submodule, even a summand, of a free left R-module,
so that A is a finitely generated submodule of a free module. By Proposi-
tion 4.29, A is a direct sum of finitely generated left ideals. As each of these
ideals is projective, A is projective.

Conversely, every finitely generated left ideal is a finitely generated sub-
module of the free R-module R. Hence, such ideals are projective, and R is
left semihereditary. e

Definition. A right R-module A is torsionless if it is isomorphic to a sub-
module of a direct product RX for some index set X.

Example 4.31.
(1) Every projective right R-module is torsionless.
(i1) Every right ideal [ is torsionless.

(iii) If R is a domain, then every torsionless R-module is torsion-free. The
converse is false. For example, Q is not a submodule of 7X for any
set X.

(iv) If A is a left R-module, then Homg (A, R) € R is a torsionless right
R-module. <«

In the midst of proving the next theorem, we are going to use Corol-
lary 8.26: if every left ideal in a ring R is flat, then every submodule of a flat
left R-module is flat.

Theorem 4.32 (Chase). The following statements are equivalent.
(1) R is left semihereditary.
(i1) R is left coherent and every submodule of a flat left R-module is flat.
(iii) Every torsionless right R-module is flat.

Proof. (i) = (ii) If R is left semihereditary, then every finitely generated
left ideal 7 is projective; hence, I is finitely presented, by Proposition 3.11.
Therefore, Theorem 3.66 gives R left coherent. Since every finitely generated
left ideal is projective, it is flat. It follows from Proposition 3.48 that every
left ideal is flat, and so Corollary 8.26 applies to show that every submodule
of a flat module is itself flat.

(i1) = (i) If 1 is a finitely generated left ideal, then 7 is a submodule of the flat
module R, and so [ is flat; since R is left coherent, / is also finitely presented.
Hence, I is projective, by Theorem 3.56, and so R is left semihereditary.
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(i) = (iii) Since R is left coherent, Theorem 3.66 says that the right R-
modules RX are flat, for any X. By definition, every torsionless right R-
module is a submodule of some R¥, and so it is flat.

(iii)) = (ii) For every set X, the right R-module RX is torsionless, and so it
is flat, by hypothesis. It follows from Theorem 3.66 that R is left coherent.
Every left ideal is torsionless, so it, too, is flat. Thus, Corollary 8.26 says that
every submodule of a flat module is flat. e

Let us now consider Priifer rings.

Recall that if R is any domain, then the forsion submodule t M of an R-
module M is tM = {m € M : rm = 0 for some nonzero r € R}. Note that
tM is a submodule of M and that M/t M 1is torsion-free; that is, its torsion
submodule is {0}.

Lemma 4.33. Let R be a domain with fraction field Q.
(1) If A is a torsion-free R-module, then there is an exact sequence
0—-A—->V->T-—>0,
where V is a vector space over Q and T is torsion.

(1) If A is finitely generated and torsion-free, then A can be imbedded in a
finitely generated free R-module.

Proof.

(1) Let V = Env(A), the injective envelope of A. If v € V, then there is
r € Rwithrv # 0and rv € A. It follows that A torsion-free implies V
torsion-free, and that V' /A is torsion. Finally, Exercise 2.38 on page 97
shows that V' is a vector space over Q, for it is torsion-free and divisible.

(i) Let A = (ay, ..., a,). By part (i), A is imbedded in a vector space V
over Q. If X is a basis of V, then each ¢; is a linear combination of
finitely many basis vectors in X. It follows that A is imbedded in the
finite-dimensional vector space with basis B = {x1, ..., x;,} consisting
of all x € X involved in expressing any of the a;. For each a;, there are
Tij, Sij € R with a; = Zj(rij/sij)xj. Ifs = Hi,j Sijs then s~ 1B =
{s7'x1,...,5 "x,} is a basis of V. In fact, the R-submodule of V
generated by s~ ! B is free with basis s ' B, and it contains A. e

Theorem 4.34. A domain R is a Priifer ring if and only if every finitely
generated torsion-free R-module A is projective.
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Proof. By Lemma 4.33(ii), A can be imbedded as a submodule of a free R-
module. Since R is a Priifer ring, Proposition 4.30 says that A is projective.

Conversely, let / be a finitely generated ideal in a domain R. Since R is a
torsion-free R-module, the hypothesis says that [ is projective. Therefore, R
is a Priifer ring. o

In Corollary 3.51, we saw that if R is a PID, then R-modules are flat if
and only if they are torsion-free. We now generalize this to Priifer rings.

Theorem 4.35. If R is a Priifer ring, then an R-module B is flat if and only
if B is torsion-free.

Proof. 'We proved, in Proposition 3.49, that if R is any domain, then flat
R-modules are torsion-free. Conversely, assume that B is a torsion-free R-
module. By Proposition 3.48, it suffices to prove that every finitely generated
submodule B’ € B is flat. Since R is a Priifer ring and B’ is torsion-free,
Theorem 4.34 says that B’ is projective. Hence, B’ is flat, and so B is flat. e

We now combine the two previous results to give another characterizion
of Priifer rings.

Corollary 4.36. Let R be a domain. Then R is a Priifer ring if and only if
every torsion-free R-module is flat.

Proof. If R is a Priifer ring and B is a torsion-free R-module, then B is flat,
by Theorem 4.35. Conversely, we prove that every torsionless R-module is
flat. Now RX is torsion-free, because R is a domain, and so every torsionless
R-module, being a submodule of some R¥, is flat, by hypothesis. Therefore,
R is a Priifer ring, by Theorem 4.35. o

4.5 Quasi-Frobenius Rings

We are now going to assume that a ring R is self-injective; that is, R is in-
jective as a left R-module. (There is no need to consider self-projective or
self-flat, for the left R-module R is always projective, and hence it is always
flat.) Self-injectivity is most interesting when it is coupled with chain condi-
tions.

Definition. A ring R is quasi-Frobenius if it is left and right noetherian and
R is an injective left R-module.
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It can be shown that the apparent asymmetry of the definition is only
virtual: if R is quasi-Frobenius, then R is an injective right R-module (see
Jans, Rings and Homology, p. 78, or Lam, Lectures on Modules and Rings,
p- 409).

Clearly, semisimple rings are quasi-Frobenius (for they are both left and
right noetherian, and every module is injective); in particular, kG is quasi-
Frobenius when G is a finite group and k is a field whose characteristic does
not divide |G|. Although there are other examples, as we shall see, the most
important examples of quasi-Frobenius rings are group rings kG for G finite
and k a field of any characteristic (see Theorem 4.46). Such rings arise nat-
urally in the theory of modular group representations. For example, if G is
a finite solvable group, then a minimal normal subgroup V of G is a vector
space over [F, for some prime p (see Rotman, An Introduction to the Theory
of Groups, p. 105). Since V <1 G, the group G acts on V by conjugation, and
so Vis an [F, G-module.

Proposition 4.37. If R is a PID and I is a nonzero proper ideal, then R/I
is quasi-Frobenius.

Proof. ltis clear that R/ is noetherian, and so we need show only that R/
is an injective (R/I)-module. By Baer’s Criterion, it suffices to extend a map

R/I
RN
0 J/1 R/1,

inc

where f: J' — R/I from an ideal J' to amap R/I — R/I. By the Corre-
spondence Theorem, J' = J/I, where J is an ideal in R containing /; note
that / = Rb, because R is a PID. Let I = Ra. Since Ra =1 C J = Rb, we
have bc = a for some ¢ € R. The R/I-module R/I is cyclic with generator
x =141, and J/I is cyclic with generator bx.

Now f(bx) = sx for some s € R. Since bcx = ax = 0, we have
0 = c¢f(bx) = csx, so that cs € Ra (because x = 1 + Ra). Therefore,
¢s = ra = rbc for some r € R. Canceling ¢ gives s = rb, so that f(bx) =
sx = rbx. Define g: R/I — R/I to be multiplication by r. Now g extends
f, for g(bx) = rbx = f(bx). Therefore, R/I is self-injective, and R/ is
quasi-Frobenius. e

Compare the next result with Examples 4.4(iv) and (v).

Corollary 4.38. The rings 1,,, where n > 1, and the rings k[x]/I, where k
is a field and 1 is a nonzero ideal, are quasi-Frobenius rings.
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Proposition 4.39. [f R is left and right noetherian, then R is quasi-Frobenius
if and only if every projective left R-module is injective.

Proof. If R is quasi-Frobenius, then every free left R-module F is a direct
sum of injectives (for R is injective). Since R is left noetherian, Proposi-
tion 3.31 says that F is injective. If P is projective, then it is a direct sum-
mand of a free module; here, P is a direct summand of an injective module
and, hence, it is injective.

Conversely, the left R-module g R is projective, and so it is injective, by
hypothesis. Since R is left and right noetherian, it is quasi-Frobenius. e

One of the standard proofs of the Basis Theorem for finite abelian groups
has as its crucial step the observation that a cyclic subgroup of largest order is
a direct summand.

Corollary 4.40 (Basis Theorem). Every finite abelian group G is a direct
sum of cyclic groups.

Proof. By the primary decomposition theorem, we may assume that G is a
p-primary group for some prime p. If p” is the largest order of elements in
G, then p"g = Oforall g € G,and so G is an I ,»-module. If x € G has order
p",then § = (x) = I,». Hence, S is injective, for [ ,» is quasi-Frobenius, by
Corollary 4.38. But injective submodules are always direct summands, and so
G = S @ T for some submodule 7. By induction on |G|, the complement T
is a direct sum of cyclic groups. e

There is another chain condition that is dual, in the lattice-theoretic sense,
to noetherian rings.

Definition. A left R-module M (over any ring R) has DCC (descending
chain condition) if every descending chain of submodules

M=My2>2M 2M2---

stops; that is, there is an integer n with M, = M1 = M40 = ---.
Definition. A ring R is left artinian if it has DCC on left ideals.

Example 4.41.

(1) There exist left artinian rings that are not right artinian (see Lam, A First
Course in Noncommutative Rings, p. 22).

(i) The Hopkins—Levitzki Theorem (see Rotman, Advanced Modern Alge-
bra, p. 555) says that every left artinian ring is left noetherian.
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(iii) If k is a field, then every finite-dimensional k-algebra is left and right
artinian. In particular, if G is a finite group, then kG is left and right
artinian.

(iv) Every semisimple ring is left and right artinian.
(v) Every finite ring is left and right artinian.

(vi) A left R-module M has both chain conditions (DCC and ACC on sub-
modules) if and only if M has a composition series; that is, there is a
chain of submodules

M=My2M 2M; 2 -2 M, ={0}
in which every factor module M;/M;_1 is a simple module.

(vii) Every quasi-Frobenius ring is left and right artinian (see Lam, Lectures
on Modules and Rings, p. 409). <«

Proposition 4.42.

(i) A ring R is left artinian if and only if R satisfies the minimum condi-
tion: every nonempty family F of left ideals in R has a minimal element.

(1) If R is left artinian, then every nonzero left ideal I contains a minimal
left ideal.

Proof. 'The proof of part (i) is dual to that of Corollary 3.16, and it is left to
the reader. To prove (ii), let / be a nonzero left ideal, and define F to be the
family of all the nonzero left ideals J contained in /. The reader may show
that a minimal element of F is a minimal left ideal. e

Corollary 4.43. Every quotient ring of a left artinian ring R is left artinian.

Proof. Let I be a two-sided ideal in R, so that R/[ is a ring. By the Corre-
spondence Theorem, any descending chain of left ideals in R/ corresponds
to a descending chain of left ideals in R (which contain 7). This chain in R
stops, and so the original chain in R/I stops. e

We are now going to show, for every finite group G and every field k (of
any characteristic), that kG is quasi-Frobenius.

Definition. Let R be a finite-dimensional algebra over a field k. Then R is
called a Frobenius algebra if R = Homy (Rg, k) as left R-modules.

Observe that the dual space Homy (Rg, k) is a left R-module, as in Propo-
sition 2.54.
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Proposition 4.44. Every Frobenius algebra R is quasi-Frobenius.

Proof. Every finite-dimensional k-algebra is left and right noetherian. Now
R = Homg (RRg, k), by hypothesis. On the other hand, Lemma 3.37 shows
that Homy (Rpg, k) is injective. Therefore, R = Homy (Rp, k) is injective, and
SO R is quasi-Frobenius. e

Lemma 4.45. Let R be a finite-dimensional algebra over a field k. If there
is a linear functional f: R — k whose kernel contains no nonzero left ideals,
then R is a Frobenius algebra.

Proof. Define 6: R — Homy (R, k) by 6,(x) = f(xr) forall x € R;itis
easy to check that each 6, is a k-map and that r'0, = 0,/,; that is, 6 is an
R-map. We claim that 6 is injective. If 6, = 0, then 0 = 6,(x) = f(xr) for
all x € R. But this says that Rr C ker f; by hypothesis, r = 0. Finally, if
dimg(R) = n, then dimy Homg (R, k) = n [for Homg (R, k) is just the dual
space of g R]. Therefore, & must be surjective, being an injection between two
n-dimensional spaces. e

Theorem 4.46. If G is a finite group and k is any field, then kG is a Frobe-
nius algebra, and hence it is quasi-Frobenius.

Proof. By Lemma 4.45, it suffices to give a linear functional f: kG — k
whose kernel contains no nonzero left ideals. Each r € kG has a unique
expression

r= E ryx, wherer, € k.
xeG

Define f: kG — k by f: r +— rq, the coefficient of 1. Suppose that ker f
contains a left ideal 7. If r = ) ryx € I, then 0 = f(x_lr) = r,. Hence,
ry = 0forall x € G and r = 0. Therefore, I = {0}. o

Definition. A module M is indecomposable if M # {0} and M has no
nonzero direct summands.

Every simple module is indecomposable, but the converse is false. For
example, if p is a prime, then the abelian group I,> is indecomposable, but it
is not simple.

Proposition 4.47. Let R be a ring. If a left R-module M has either chain
condition on submodules, then M is a direct sum of a finite number of inde-
composable submodules.
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Proof. Call a module good if it is a direct sum of a finite number of inde-
composable submodules; call it bad otherwise. An indecomposable module
is good and, if both A and B are good, then A @ B is good. Therefore, if M is
a bad module, then M = U @ V, where U, V are proper submodules at least
one of which is bad.

If M is a bad module, define Ny = M. By induction, for every n > 0,
there are bad submodules Ny, Ny, ..., N, with each N; a proper bad direct
summand of N;_1. There is a strictly decreasing sequence of submodules:

M=Ny2Ni 2N 2D ---.

If M has DCC, we have reached a contradiction.

Suppose M is a bad module having ACC. Since each N; is a direct sum-
mand of N;_1, there are complements L; with N;_; = N; & L;. This gives a
strictly ascending sequence of submodules of M,

LiCLi®L,CLi®@L, L3 C -+,

another contradiction. e

Definition. If a ring R is a direct sum of indecomposable modules, say,
R = ; L;, then any module M isomorphic to some L; is called a principal
indecomposable module.

By Proposition 4.47, a ring with either chain condition has principal in-
decomposable modules. Indeed, every indecomposable direct summand of R
is such a module. In particular, quasi-Frobenius rings, being left noetherian,
have principal indecomposable modules.

Recall that minimal left ideals are, by definition, nonzero.

Proposition 4.48. If R is quasi-Frobenius, then there is a bijection between
its minimal left ideals and its principal indecomposable modules.

Proof. Let I be a minimal left ideal in R. Since R = gR is injective, The-
orem 3.45(ii) shows that we may assume its injective envelope, Env(/), is a
submodule of R; that is, Env(7) is a left ideal. We claim that Env(/) is a prin-
cipal indecomposable module. As Env(/) is injective, it is a direct summand
of R. Suppose that Env(/) is not indecomposable; that is, Env(/) = A & B,
where A and B are nonzero. If I N A # {0} and I N B # {0}, then min-
imality of 7 gives I N A =1 = I NB; thatis, I € AN B = {0}, a
contradiction. Hence, either I N A = {0} or I N B = {0}; but either of
these contradicts Env(/) being an essential extension of /. Thus, the func-
tion ¢ : {minimal left ideals} — {principal indecomposable modules}, given
by ¢: I — Env(l), is well-defined.
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We show that ¢ is surjective. If E is a principal indecomposable module,
then it is injective, for it is a direct summand of R. Since R is left artinian, £
(viewed as a left ideal) contains a minimal left ideal /. By Theorem 3.45(ii)
(which applies because E is injective), we may assume that Env(/) is a sub-
module of E. As Env(/) is injective, it is a direct summand of E; but E is
indecomposable, and so E = Env(]) = ¢(I).

We show that ¢: I — Env([) is injective. If Env(I) = Env(I’), where
I and I’ are distinct minimal left ideals, then Env(/) cannot be an essential
extension of / because it contains a nonzero submodule I’ with I N I’ = {0}.
Therefore, ¢ is a bijection. e

This last result takes on more interest when we observe that every sim-
ple module over a quasi-Frobenius ring is isomorphic to a minimal left ideal
(see Curtis—Reiner, Representation Theory of Finite Groups and Associative
Algebras, p. 401). Modular Representation Theory investigates the group ring
kG of a finite group G when |G| is divisible by the characteristic of k. This
last result suggests that the role of minimal left ideals in semisimple rings is
played by principal indecomposable modules in the modular case.

4.6 Semiperfect Rings

There is a notion dual to that of injective envelope, called projective cover.
In contrast to injective envelopes, which exist for modules over any ring, pro-
jective covers exist only for certain rings, called perfect. A semiperfect ring
is one for which every finitely generated module has a projective cover. We
shall see that local rings and artinian rings are semiperfect.

We begin with some basic ring theory.

Definition. If R is a ring, then its Jacobson radical J(R) is defined to be
the intersection of all the maximal left ideals in R.

Clearly, we can define another Jacobson radical: the intersection of all
the maximal right ideals. It turns out, however, that both of these coincide
(see Rotman, Advanced Modern Algebra, p. 547), so that J (R) is a two-sided
ideal. Consequently, R/J(R) is a ring.

Example 4.49.

(i) The maximal ideals in Z are the nonzero prime ideals (p), and so J (Z) =
N » prime(p) = {0}, for a nonzero integer is divisible by only finitely
many primes.
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(ii) Let k be a field and let R = Mat, (k). For any ¢ between 1 and n, let
coL(t) = {laij] € R : a;j =0forall j # ¢}, and let coL*(¢) =
Y 20 coL(i). Now coL(f) is a minimal left ideal, hence, a simple
left R-module. Since R/coL*(£) = coL(¥), we see that cOL*({) is a
maximal left ideal. Therefore, J(R) € (), coL*(¢) = {0}. =

We can characterize the elements in the Jacobson radical.

Proposition 4.50. [f x is an element in a ring R, then x € J(R) if and only
if, for each a € R, the element 1 — ax has a left inverse; that is, there isu € R
withu(l —ax) = 1.

Proof. If R(1 — ax) is a proper left ideal, then Zorn’s Lemma shows that
there is some maximal left ideal containing it; say, R(1 — ax) € M. By
definition, ax € J € M, sothat 1 = (1 — ax) 4+ ax € M, contradicting M
being a proper ideal. Therefore, R(1 — ax) = R, and so there is u € R with
u(l —ax) =1.

Conversely, if x ¢ J, then there is a maximal left ideal M with x ¢ M.
Since M C M + Rx, we have M + Rx = R, so that there are m € M and
a € Rwithm+ax =1.1If m = 1—ax has aleftinverse u,then 1 = um € M,
contradicting M being a proper left ideal. e

Proposition 4.51 (Nakayama’s Lemma). [f M is a finitely generated left
R-module, and if JM = M, where J = J(R) is the Jacobson radical, then
M = {0}.

Proof. Let my,...,m, be a generating set of M that is minimal in the
sense that no proper subset generates M. Since JM = M, we have m| =
i rimi, where r; € J. It follows that

n

(I —rpm; = Zr,-m,-.

=2

Since r; € J, Proposition 4.50 says that 1 — r; has a left inverse, say, u, and
som| = 2?22 ur;m;. This is a contradiction, for now M can be generated by
the proper subset {my, ..., m,}. e

Remark. The hypothesis in Nakayama’s lemma that the module M be
finitely generated is necessary. For example, it is easy to check that Z) =
{a/b € Q : bis odd} has a unique maximal ideal, namely, P = Z)2, so that
J(Z(z)) = P.ButQisa Z(z)—module with PQ =20Q0=0Q. =«
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Proposition 4.52. Let R be a left artinian ring.
(1) J = J(R) is nilpotent; that is, there is n > 0 with J" = {0}.
(i) Ifa € J, then a™ = 0.

Proof.

(i) Since R is left artinian, the descending chain J 2> J 2o 3o ...
must stop: there is n > 0 with J” = J"t! = J"+2 = ... We claim
that J* = {0}. Otherwise, J"J = J"! = J" £ {0}, and so F =
{I : I is aleft ideal, J"I # {O}} # & (for J € F). Left artinian rings
satisfy the minimum condition, so that F has a minimal element: there
is a left ideal 7,, minimal such that J"I,, # {0}. Of course, I,, # {0};
choose y € I, with J"y # {0}, so that J"y € F. Now J"y C I,
so that minimality gives J"y = [,. But J"y € Ry C I, so that
J"y = Ry; hence, J"y is finitely generated (even cyclic).” Finally,
J'"Ry = J(J"y) = J""'y = J"y = Ry, and Nakayama’s Lemma
gives Ry = {0}, a contradiction. Therefore, J" = {0}.

(i1) Since J" = {0}, every product a; - - - a,, having n factors a; € J is 0. In
particular, if every a; = a € J,thena” =0. e

Definition. An idempotent in a ring R is an element e with e? = e. If I is
a two-sided ideal in a ring R, then an idempotent g + / € R/I can be lifted
mod / if there is an idempotent e € R withe + 1 = g + 1.

Proposition 4.53. If R is left artinian with Jacobson radical J = J(R),
then every idempotent can be lifted mod J.

Proof. By Proposition 4.52, we may assume that J” = {0}. Letg+J € R/J
be an idempotent: g + J = g> + J. Then g — g> € J, and

0=(g-¢""

= (n n—k 2.k
= g (=89
;)
— (_l)k <n>gl’l+k
2V
— g — gt [Z(_l)k—l(z>gk:| .
k=1

2The Hopkins—Levitzki Theorem states that every left artinian ring is left noetherian.
Had we proved this, we could have used it here to show that J"y is finitely generated.
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If we define 1 = >/L, (—=1)*7!(}) g*, then

g"=g""h and gh = hg.

Define

e=g"n".
We claim that e is idempotent: ¢ = g"h" = (¢"T'h)h"* = "1t it
erating, ¢ = g"?h"t? = ... = g?"h?" = ¢2. Finally, we show that

e+J = g+J. Theequation g+J = g>+J gives g+J = g"+J = g" T +J.
Now
g+J=¢"+J
=g "h+J
=@+ D+
=@+ h+J)
=gh+J.

Hence,g+J=g¢"+J=g+J))"'=@gh+J0)"'=g"h"+J=e+J. o

Definition. A (not necessarily commutative) ring is local if it has a unique
maximal left ideal.

Many authors who use the term local ring assume that the ring is commu-
tative, and many of these assume further that it is noetherian.

It appears that local rings should be called left local, but it can be shown
that a ring has a unique left ideal if and only if it has a unique right ideal, in
which case they coincide (each is the Jacobson radical). If R is a local ring,
then J(R) is its unique maximal left (or right) ideal.

Example 4.54.
(i) Division rings and fields are local with unique maximal left ideal {0}.

(ii) If p is a prime, then [,» = Z/p"Z is local with unique maximal ideal
(p+ p"Z).

(iii) If & is a field, then k[[x]] is local with unique maximal ideal (x).

(iv) If p is a prime, then Z,) = {a/b € Q : p { b} is a local ring with
unique maximal ideal {ap/b € Q : p 1 b}.

(v) If E is an indecomposable injective R-module, then Endg (E) is a local
ring with unique maximal left ideal {¢: E — E : ker¢p # {0}} (Lam,
Lectures on Modules and Rings, p. 84). <
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Corollary 4.55. If R is a local ring with maximal left ideal P, and if M is a
finitely generated R-module with PM = M, then M = {0}.

Proof. 'The statement follows at once from Nakayama’s Lemma, because
J(R) = P when R is a local ring with unique maximal left ideal P. e

Here are some properties of local rings.

Proposition 4.56. Let R be a local ring with maximal left ideal J.
(1) Ifr € Randr ¢ J, then r has a left inverse in R.

(1) If R is a local ring with maximal left ideal J, then J is a two-sided ideal
and R/J is a division ring.

(iii) R has IBN.
Proof.

(1) Ifr ¢ J,then Rr C J. Now every proper left ideal is contained in some
maximal left ideal. Since R has only one maximal left ideal, namely,
J, we conclude that Rr is not a proper left ideal: Rr = R. Therefore,
there is u € R with ur = 1.

(i) The unique maximal ideal J is the Jacobson radical J(R), which is a
two-sided ideal, and so R/J isaring. If r +J #£ 0in R/J,thenr ¢ J.
By part (i), r has a left inverse in R, and so r 4 J has a left inverse in
R/J. It follows that the nonzero elements in R/J form a multiplicative
group’; that is, R/J is a division ring.

(iii) As we remarked on page 60, the proof that nonzero commutative rings
have IBN generalizes to rings R having a two-sided ideal J for which
R/J is adivisionring. e

Theorem 4.57. Let R be a local ring with maximal left ideal J, Let M be a

finitely generated left R-module, and let B = {m1, ..., m,} be a minimal set
of generators of M (that is, M cannot be generated by a proper subset of B).
If F is a free left R-module with basis x1, ..., x,, and if o: F — M is given

by ¢(x;) = m; for all i, thenkerp C JF.

Proof. There is an exact sequence

0> K—>F -2 M- 0, (1)

3To prove that a monoid is a group, it suffices to assume the existence of left inverses.
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where K = kerg. If K C JF, there is an element y = Y | rix; € K
that is not in J F’; that is, some coefficient, say, r; ¢ J. Thus, r| has a left
inverse u € R, by Proposition 4.56(i); thatis, ur; = 1. Now y € K = kerg
gives Y _rim; = 0. Hence, m; = —u(Z:’:z rim,-), which implies that M =
(my, ..., my,), contradicting the minimality of the original generating set. e

Theorem 4.58. If R is a local ring, then every finitely generated projective
left R-module M is free.

Proof. Returning to exact sequence (1), projectivity of M gives F' = K &
M’, where M’ is a submodule of F with M’ = M. Hence, JF = JK & JM'.
Since JK € K C JF, Corollary 2.24 gives

K=JK®KNJIM).

But KNJM' € KNM’' = {0}, sothat K = JK. The submodule X is finitely
generated, being a summand (and hence a homomorphic image) of the finitely
generated module F, so that Nakayama’s Lemma gives K = {0}. Therefore,
@ is an isomorphism and M is free. e

After proving Corollary 3.9(ii) [if every countably generated projective
left R-module is free (for a ring R), then every projective left R-module is
free], Kaplansky proved that every countably generated projective left R-
module over a local ring R is free [“Projective modules,” Annals Math. 68
(1958), 372-377)]. Thus, the finiteness hypothesis in Theorem 4.58 is unnec-
essary.

We now discuss projective covers.

Definition. A submodule S of a module M is superfluous if, whenever
L C M is asubmodule with L + S = M, then L = M.

One often calls elements of a superfluous submodule nongenerators, for
if M = (x1,...,%n,S1,...,8), then M = (x1,...,x,); discarding them
from a generating set of M leaves a generating set of M. It is clear that any
submodule of a superfluous submodule is itself superfluous.

Lemma 4.59.
(i) Let S be superfluous in M. If M C N, then S is superfluous in N.*

(i) If S; is superfluous in M; fori = 1,...,n, then @ S; is superfluous

ii’l@Mi.

4The converse is false: if S € M C N and S is superfluous in N, then S need not be
superfluous in M. For example, if S is superfluous in N and S # {0}, take S = M.
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Proof.

(i) Let L+ S = N. We claim that (L N M) + § = M. The inclusion C
is obvious; for the reverse inclusion, if m € M, then m = £ + s for
feLands € S.Nowl =m —s € L N M (because S C M), and so
me (LN M)+ S. Since S is superfluous in M, we have M = L N M;
thatis, M C L. Hence, N = S+ L = L (because S C M C L).

(i) By induction, we may assume that n = 2. Since Sj is superfluous in
M, it is superfluous in M| @ M;, by part (i); similarly, S, is superfluous
in M@ M. Suppose that L € M@ M> and L+ (S1+ S2) = M1 M>.
Now L+ (S1+S52) = (L+ S1)+ 952, so that S; superfluous in M @ M,
gives L + S| = M| & My; finally, S| superfluous in M| & M, gives
L=M &M, e

Lemma 4.60.

(i) Let R be a ring with Jacobson radical J. If M is a finitely generated
left R-module, then J M is superfluous in M.

(i) Let R be a local ring with maximal left ideal J. If M is a finitely gener-
ated left R-module, then J M is superfluous in M.

Proof.

(1) If L is a submodule of M such that L + JM = M, then M/L =
(L+JM)/L = J(M/L) € M/L; hence, M/L = J(M/L). Since
M /L is finitely generated, Nakayama’s Lemma gives M /L = {0}; that
is, L =M.

(i1) In this case, J is the Jacobson radical. e

The notion of superfluous submodule should be compared to that of es-
sential extension. Using lattice-theoretic notation, a submodule S € M is
superfluous if S v L = M implies L = M, while M O T is essential if
T AL = 0implies L = 0. An injectioni: T — E is called essential if
M D imi is an essential extension; dually (in the categorical sense), a surjec-
tion ¢: F — T is called essential if ker ¢ is a superfluous submodule of F'.

Definition. A projective cover of a module B is an ordered pair (P, ¢),
where P is projective and ¢: P — B is a surjective map with ker ¢ a super-
fluous submodule of P.

Example 4.61. The Z-module I, does not have a projective cover. Let
¢: F — I, be a surjection, where F' is a free abelian group. If p(x) = a,
where I = (a), then ¢(3x) = a. Hence, F = kerp + (3x). If kerg is
superfluous in F, then F = (3x), which is not so. <«
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Theorem 4.62. If R is a local ring with maximal left ideal J, then every
finitely generated left R-module B has a projective cover: there is an exact
sequence

0> K—>F-2 B0
with F a finitely generated free left R-module and K C JF.

Proof.  There exist a free module F and a surjective ¢: F — B with K C
J F, by Theorem 4.57. But K is superfluous, by Lemma 4.60, and so (F, ¢)
is a projective cover of B. e

Definition. A ring R is called left perfect if every left R-module has a pro-
jective cover. A ring R is semiperfect if every finitely generated left R-module
has a projective cover.

Theorem 4.62 says that local rings are semiperfect.

There are left perfect rings that are not right perfect (Lam, A First Course
in Noncommutative Rings, p. 356). Lam calls a ring R semiperfect if R/J is
semisimple and idempotents in R/J can be lifted mod J, a definition not
needing any left/right distinction. However, Theorem 24.16 on p. 364 of
Lam’s book shows that this definition is equivalent to our definition in terms
of projective covers. Therefore, the notions of left semiperfect ring and right
semiperfect ring coincide, and we will write semiperfect ring without the ad-
jectives left or right.

Theorem (Bass). The following conditions are equivalent for a ring R.
(1) R is left perfect.
(i1) R has the DCC on principal right ideals.
(iii) Every flat left R-module is projective.

Proof.  See Lam, A First Course in Noncommutative Rings, p. 354. e

The following two results can be found in S. U. Chase, “Direct products
of modules,” Trans. AMS 97 (1960), 457-473.

Theorem (Chase). Every direct product of projective left R-modules is pro-
Jjective if and only if R is left perfect and right coherent.

Theorem (Chase). If R is commutative, then every direct product of projec-
tive R-modules is projective if and only if R is artinian.

Let us return to projective covers.
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Lemma 4.63. Let (P, ¢) be a projective cover of a module B. If Q is pro-
jective and . Q — B is surjective, then any lifting o : Q — P is surjective.
Moreover, P is (isomorphic to) a direct summand of Q.

PT>B*>0.

Proof.  Since Q is projective, there exists amap o: Q — P with po = .
Now ¢(imo) = imyy = B, because 1 is surjective. Therefore, P = imo +
ker ¢, by Exercise 2.18 on page 67. But ker ¢ is a superfluous submodule of

P, so that imo = P. The second statement follows from the projectivity
of P. e

Projective covers, when they exist, are unique.

Proposition 4.64.

(i) Let P and Q be R-modules having either chain condition on submod-
ules. If each of P, Q is isomorphic to a direct summand of the other,
then P = Q.

(i1) Let R have either chain condition on left ideals. If ¢: P — B and
Y Q — B are projective covers of a finitely generated left R-module
B, then there is an isomorphism o : Q — P with o = .

Proof.

(i) Let P= Q1 ® Ay and Q| = P & B, where P{ = P and Q| = Q.
Hence, P = Q1 ® A = P ® B & Ay; write B & A; = Cy. Now
repeat: by induction, there are direct summands

POPIODPLOP;D---,

with P, = P for all n > 1, and this violates the DCC. If we display the
complements, we have a sequence

P=P®Ci=PpCrdCi=P3PC3pCr®C1="--,

where P,_; = P, & C,, for all n > 1. The ascending sequence C; <
CrdCi CC3dCyrdCy C --- violates the ACC. Therefore, A; =
{0} = By, and P = Q.

(i1) Since R has either chain condtion on left ideals, then P being finitely
generated forces P to have either chain condition on submodules. By
Lemma 4.63, each of P and Q is a direct summand of the other. By
part (i), P= Q. e

We now prove that left artinian rings are semiperfect.
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Lemma 4.65. Let R be a left artinian ring with Jacobson radical J. If €’ is
an idempotent in R/ J, then there is a projective cover of (R/J)e'.

Proof. By Proposition 4.53, the idempotent ¢’ can be lifted to an idempotent
e € R. There is an exact sequence

0— Je — Re -2 (R/J)e — 0,

where ¢: re > re’ (the reader may verify that ker ¢ = Je). Now P = Re is
a direct summand of R, because e is idempotent, and so P = Re is projective.
By Lemma 4.60, Je = J (e) is superfluous in Re, and so we see that (Re, ¢)
is a projective cover of (R/J)e'. o

Theorem 4.66. Every left artinian ring R is semiperfect; that is, every
finitely generated left R-module M has a projective cover.

Proof. Let M be a finitely generated left R-module. If J is the Jacobson
radical of R, then the kernel of the natural map 7: M — M/JM is JM,
which is superfluous in M, by Lemma 4.60. Since R/J is semisimple, the
(R/J)-module M/JM is a direct sum of simple modules: M/JM = P S;,
where each §; is isomorphic to a minimal left ideal of R/J. But S; = (R/J )el’.
for some idempotent e (because S;, as every submodule of R/J, is a direct
summand). By Lemma 4.65, there are projective covers ¢;: P; — S; for
all i. Finally, Lemma 4.59 shows that (6D P;, ®¢;) is a projective cover of
PSi=M. e

4.7 Localization

All rings in this section are commutative.

The ring Z has infinitely many prime ideals, but the ring Z«) = {a/b € Q :
b is odd} has only one prime ideal, namely, (2) (all other primes in Z are in-
vertible in Z()). Now Z)-modules are much simpler than Z-modules. For
example, there are only two Z)-submodules of Q (to isomorphism): Z)
and Q. On the other hand, there are uncountably many nonisomorphic sub-
groups of Q. Similar observations lead to a localization-globalization strategy
to attack algebraic and number-theoretic problems. The fundamental assump-
tion underlying this strategy is that the local case is simpler than the global.
Evidence for this can be seen in the structure of projective R-modules: for
arbitrary commutative rings R, projectives can be quite complicated, but The-
orem 4.58 says that projective modules over local rings are always free. Given
a prime ideal p in a commutative ring R, we will construct local rings Ry,. Lo-
calization looks at problems involving the rings Ry, while globalization uses
all such local information to answer questions about R.
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Definition. A subset S € R of a commutative ring R is multiplicative if S
is a monoid not containing 0; that is, 0 ¢ S, 1 € S, and § is closed under
multiplication: if s, s’ € S, then ss’ € S.

Example 4.67.

(1) If p is a prime ideal in R, then its set-theoretic complement S = R — p
is multiplicative.

(ii) If R is a domain, then the set S = R of all its nonzero elements is
multiplicative [this is a special case of part (i), for {0} is a prime ideal
in a domain].

(ili) If a € R is not nilpotent, then the set of its powers S = {a”" : n > 0} is
multiplicative. More generally, any submonoid of R not containing 0 is
multiplicative. <«

Definition. If S C R is multiplicative, consider C(S), all ordered pairs
(A, p), where A is a commutative R-algebra, ¢: R — A is an R-algebra
map, and ¢(s) is invertible in A for all s € S. An ordered pair (S IR, h) in
C(S) is alocalization of R if it is a solution to the following universal mapping
problem.
R——" IR
0 Ry
A

If (A, @) € C(S), then there exists a unique R-algebramap &: S™'R — A
with @h = . The map # is called the localization map.

A localization S~!R, as any solution to a universal mapping problem, is
unique to isomorphism if it exists, and we call ™' R he localization at S.

The reason for excluding O from a multiplicative set is now apparent, for
0 is invertible only in the zero ring.

Given a multiplicative subset S € R, most authors construct the localiza-
tion S~! R by generalizing the (tedious) construction of the fraction field of a
domain R. They define a relation on R x S by (r, s) = (r/, s') if there exists
s” € S with s”(rs’ — r’s) = 0 (this definition reduces to the usual definition
involving cross multiplication when R is a domain and S = R* is the sub-
set of its nonzero elements). After proving that = is an equivalence relation,
S~IR is defined to be the set of all equivalence classes, addition and multipli-
cation are defined and proved to be well-defined, all the R-algebra axioms are
verified, and the elements of S are shown to be invertible. Our exposition fol-
lows that of M. Artin; we develop the existence and first properties of S™' R in
a less tedious way, which will show that the equivalence relation generalizing
cross multiplication arises naturally.
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Theorem 4.68. [fS C R is multiplicative, then the localization S 1R exists.

Proof. Let X = {x; : s € S} be a set with x; > s a bijection X — S, and
let R[X] be the polynomial ring over R with indeterminates X. Define

S~'R = R[X1/J,

where J is the ideal generated by {sx; — 1 : s € S}, and defineh: R — S™'R
by h: r — r + J, where r is a constant polynomial. It is clear that S™'R
is an R-algebra, that & is an R-algebra map, and that each /A (s) is invertible.
Assume now that A is an R-algebra and that ¢: R — A is an R-algebra
map with ¢(s) invertible for all s € §. Consider the diagram in which the
top arrow ¢: R — R[X] sends each r € R to the constant polynomial » and
v: R[X] — R[X]/J = SR is the natural map.

L

R R[X]
h
\ /%/
o\ SR //wo
L
Y £
A

The top triangle commutes because both 2 and vt send r € R tor + J.
Define an R-algebra map ¢o: R[X] — A by ¢o(x5) = qa(s)_1 forall x; € X.
Clearly, J € ker ¢, for gp(sxs — 1) = 0, and so there is an R-algebra map
@: ST'R = R[X]/J — A making the diagram commute. The map & is the
unique such map because S~! R is generated by im2 U {A(s) ™! : s € S} as an
R-algebra. e

We now describe the elements in S~ R.

Proposition 4.69. If S C R is multiplicative, then each y € S™'R has a
(not necessarily unique) factorization y = h(r)h(s)~!, where h: R — S™'R
is the localization map, r € R, and s € §.

Proof. Define A ={ye ST'R:y=~h@r)h(s)~", forr € Rands € S}. It
is routine to check that A is an R-subalgebra of S~!R containing im 4. Since
imh C A, there is an R-algebra map 2’: R — A that is obtained from % by
changing its target. Consider the diagram

R4>S IR

\ ih’>
%,

ST'R,
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where j: A — STI'R is the inclusion and W:S'R > Ais given by
universality (so the top triangle commutes). The lower triangle commutes,
because h(r) = h'(r) for all r € R, and so the large triangle commutes:
(Jh')h = h. But 1 -1 also makes this diagram commute, so that uniqueness
gives jh' = 14-1p. By set theory, j is surjective; that is, STIR=A. o

In light of this proposition, the elements of S~! R can be regarded as “frac-
tions” A(r)h(s)~!, where r € R and s € S.

Notation. Let/: R — S™!R be the localization map. If € R and s € S,
define

r/s = h(r)h(s)"".
In particular, r/1 = h(r).

Is the localization map & : r — r/1 an injection?

Proposition 4.70. If S C R is multiplicative and h: R — S™'R is the
localization map, then

kerh = {r € R : sr = 0 for some s € S}.

Proof. If sr =0, then 0 = h(s)h(r) in S—!'R. Since h(s) is a unit, we have
0 = h(s)"'h(s)h(r) = h(r),and so r € kerh.

Conversely, suppose that 4(r) = 0in S™'R. Since S™'R = R[X]/J,
where J = (sx; — 1 : s € S), there is an equation r = Z;’Zl fi(X)(sixg, — 1)
in R[X] that involves only finitely many elements {s1,...,s,} C S; let Sp
be the submonoid of S they generate. If hg: R — S IR is the localization
map, then r € kerhg. In fact, if s = s;---s, and /' R — (s)’lR is the
localization map (where (s) = {s" : n > 0}), then every h’(s;) is invertible,
forsi_1 =551 -5 -5, Now (s) 'R = R[x]/(sx — 1), so that r € ker i’
says that there is f(x) = > /", a;x' € R[x] with

m

r=fx)sx—1) = (Zaixi> (sx —1) = Z(sa,-xiJrl — aixi) in R[x].
i=0

i=0
Expanding and equating coefficients of like powers of x gives
r=—agp, Sdg=dai, ..., SQu_1=0ay, Sa, =70.

Hence, sr = —sap = —ay, and, by induction, s'r = —q; for all i. In particu-
lar, s"'r = —a,y,, and so s"t1r = —sa,, = 0, as desired. o

When are two “fractions” r/s and r’ /s’ equal?
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Corollary 4.71. Let S C R be multiplicative. If both r/s,r'/s' € ST'R,
where s,s' € S, then r/s = r'/s’ if and only if there exists s” € S with
s"(rs" —r's) =0in R.

Remark. If S contains no zero-divisors, then s”(rs’ — r’s) = 0 if and only
if rs’ —r's = 0, because s” is a unit, and so rs’ = r's. <«

Proof. If r/s = r’/s’, then multiplying by ss’ gives (rs’ — r’s)/1 = 0 in
S~'R. Hence, rs’ — r's € kerh, and Proposition 4.70 gives s” € S with
s"(rs" —r's) =01in R.

Conversely, if s”(rs’ — r’s) = 0 in R for some s” € S. then we have
h(s"Yh(rs' — r's) = 0in ST'R. As h(s") is a unit, we have h(r)h(s)) =
h(r")h(s); as h(s) and h(s’) are units, h(r)h(s)~' = h@G)h(s))~"; that is,
rls=r'/s'. e

Corollary 4.72. Let S € R be multiplicative.

() If S contains no zero-divisors, then the localization map h: R — S™'R
is an injection.

(ii) If R is a domain with Q = Frac(R), then ST'R € Q. Moreover, if
S = R*, then S"'R = Q.

Proof.
(1) This follows easily from Proposition 4.70.

(ii) The localizationmap #: R — S™!'R is an injection, by Proposition 4.70.
The result now follows from Proposition 4.69. e

If R is a domain and S € R is multiplicative, then Corollary 4.72 says
that S™! R consists of all elements a /s € Frac(R) witha € Rand s € S.

Let us now investigate the ideals in S~!R.

Notation. If § C R is multiplicative and / is an ideal in R, then we denote
the ideal in S~ R generated by A(1) by S™!1.

Example 4.73.

(1) If S € R is multiplicative and [/ is an ideal in R containing an element
s € S (thatis, I NS # ©), then S~ contains s/s = 1, and so
S~ =5"'R.
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(i1) Let S consist of all the odd integers [that is, S is the complement of the
prime ideal (2)], let / = (3), and let I’ = (5). Then S™'1 = §7'7Z =
S~1I’. Therefore, the function from the ideals in Z to the ideals in
S™7Z = Z@o) = {a/b € Q : bisodd}, given by I + S~'I, is not
injective. <«

Corollary 4.74. Let S C R be multiplicative.

(i) Every ideal J in S™'R is of the form S~'I for some ideal I in R. In
fact, if R is a domain and I = J N R, then J = S_ll; in the general
case, if = ™" (h(R) N J), then J = S™'1I.

(i) If I is an ideal in R, then S™'I = S™'R ifand only if N S # @.

(iii) If q is a prime ideal in R with q N S = @, then S™'q is a prime ideal in
S7IR.

(iv) The function f: q — S~'q is a bijection from the family of all prime
ideals in R disjoint from S to the family of all prime ideals in S™'R.

(v) If R is noetherian, then S ~1R is also noetherian.
Proof.

(1) LetJ = (j) : A € A). By Proposition 4.69, we have j, = h(r)h(s) L,
where r, € R and s; € S. Define [ to be the ideal in R generated by
{rn:h e A)sthatis, I = h~'(h(R)N J). Itis clear that S~'7 = J;in
fact, since all s, are units in S~! R, we have J = (h(ry) : A € A).

(i) If s € I NS, thens/1 € S~'I. But s/1 is a unit in S~'R, and so
S~ = S7'R. Conversely, if S~'1 = S™!R, then h(a)h(s)~! = 1
for some a € [ and s € S. Therefore, s — a € kerh, and so there is
s” € S with s”(s — a) = 0. Therefore, s”s = s”a € I. Since S is
multiplicatively closed, s”s € I N S.

(iii) Suppose that q is a prime ideal in R. First, S~!q is a proper ideal, for
qgNS =@. If (a/s)(b/t) = c/u, wherea,b € R,c € q,and s, t,u € S,
then there is s” € S with s”(uab — stc) = 0. Hence, s"uab € q. Now
s"u ¢ q (because s”u € S and S N q = @); hence, ab € q (because q is
prime). Thus, either a or b lies in g, and either a/s or b/t lies in S~!q.
Therefore, S~!q is a prime ideal.

(iv) Suppose that p and q are prime ideals in R with f(p) = S™'p =
S~'q = f(q); we may assume that p N S = @ = qN S. If a € p, then
there are b € qands € S witha/1 = b/s. Hence, sa—b € ker h, where
h is the localization map, and so there is s' € S with s'sa = s'b € q.
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But s’s € S, so that s’s ¢ . Since q is prime, we have a € ¢; that is,
p C q. The reverse inclusion is proved similarly. Thus, f is injective.

Let I3 be a prime ideal in S~!R. By part (i), there is some ideal / in R
with 8 = S~'7. We must show that / can be chosen to be a prime ideal
in R. Now A(R)NP is a prime ideal in 2(R), and so p = A~ (h(R)NP)
is a prime ideal in R. By part (i), B = S~!p, and so f is surjective.

(v) If J is an ideal in S~'R, then part (i) shows that J = § ~17 for some
ideal 7 in R. Since R is noetherian, we have I = (rq, ..., r,), and so
J = (r1/1,...,r,/1). Hence, every ideal in S~! R is finitely generated,
and so S~ R is noetherian. e

Notation. If p is a prime ideal in a commutative ring R and S = R — p, then
S~IR is denoted by Ry.

The next proposition explains why S~!R is called localization.

Theorem 4.75. If p is a prime ideal in a commutative ring R, then Ry is a
local ring with unique maximal ideal PRy, = {r/s : r € pand s ¢ p}.

Proof. If x € Ry, thenx =r/s, wherer € Rands ¢ p. If r ¢ p, thenr/s
is a unit in Rp; that is, all nonunits lie in pRy. Hence, if [ is any ideal in R,
that contains an element /s with r ¢ p, then I = Ry. It follows that every
proper ideal in Ry, is contained in PRy, and so Ry, is a local ring with unique
maximal ideal pRy,. o

Here is an application of localization.

Definition. A prime ideal p in a commutative ring R is a minimal prime
ideal if there is no prime ideal strictly contained in it.

In a domain, (0) is a minimal prime ideal, and it is the unique such.

Proposition 4.76. Let R be a commutative ring.

(1) If S C R is multiplicative, then any ideal I maximal with [ NS = & is
a prime ideal.

(1) If p is a minimal prime ideal, then every x € p is nilpotent; that is,
x" =0 for somen = n(x) > 1.

Proof.

(1) Ifab € I and neithera nor b liesin I, then/ C I+ Raand I C I+ Rb.
By maximality, ( + Ra) NS # & and (I + Rb) N S # @, so there
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arer,7”’ € Randi,i’ € I withi +ra=s e Sandi’' +r'b=s" € S.
Hence,

ss' =G +ra)i’ +r'b)=ii’ +ir'b+rai’ +rr'abe SN,
a contradiction.

(i1) Let x € p be nonzero. By Corollary 4.74(iv), there is only one prime
ideal in Ry, namely, pRp, and x/1 is a nonzero element in it. Indeed, x
is nilpotent if and only if x /1 is nilpotent, by Proposition 4.70. Thus, we
have normalized the problem; we may now assume that x € p and that p
is the only prime ideal in R. If x is not nilpotent, then § = {1, x, x2, .
is multiplicative. We can prove, with Zorn’s Lemma, that there exists
an ideal /7 in R maximal with / N S = &. Now part (i) says that / is a
prime ideal; thatis, p = /. Butx € SNp = SNI = &, a contradiction.
Therefore, x is nilpotent. e

Having localized a commutative ring, we now localize its modules. If M
is an R-module and s € R, let uy: M — M denote the multiplication map
m +— sm. For a subset S C R, the map p is invertible for every s € § (that
is, every 1, is an automorphism) if and only if M is an S~! R-module.

Definition. Let M be an R-module and let S € R be multiplicative. A
localization of M is an ordered pair (S™'M, hyy), where S~'M is an S~'R-
module and Ay : M — S™'M is an R-map (called the localization map),
which is a solution to the following universal mapping problem:

h
M—M>'S_]M

if M’ is an S™'R-module and ¢: M — M’ is an R-map, then there exists a
unique S~'R-map §: ST'M — M’ with Ghy = ¢.

The obvious candidate for (S~ M, hyy), namely, (ST'RQRM,h®1y),
where h: R — SR is the localization map, actually is the localization.

Proposition 4.77. Let S C R be multiplicative and let M be an R-module.
Then S~'R @k M and the R-maphyy =hQ1ly: M — STITR@r M, given
bym — 1 ® m, is a localization of M.

Proof. Let@: M — M’ be an R-map, where M’ is an S~! R-module. The
function ST'R x M — M’, defined by (r/s,m) — (r/s)gp(m), where r € R
and s € S, is easily seen to be R-bilinear. Hence, there is a unique R-map
@: ST'R®r M — M’ with Ghy; = ¢. Now M’ is an S~!R-module, by
Proposition 2.51. We let the reader check that & is an S~' R-map. e
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One of the most important properties of S~ R is that it is flat as an R-
module. To prove this, we first generalize the argument in Proposition 4.70.

Proposition 4.78. Let S € R be multiplicative. If M is an R-module and
hy: M — S™'M is the localization map, then

kerhy = {m € M : sm = 0 for some s € S}.

Proof. Denote {m € M : sm = 0 for some s € S} by K. If sm =0, form €
M and s € S, then hy (m) = (1/s)hp(sm) = 0, and so K C kerhy,. For
the reverse inclusion, proceed as in Proposition 4.70: if m € K, thereiss € S
with sm = 0. Reduce to S = (s) for some s € S, where (s) = {s" : n > 0},
sothat ST'R = R[x]/(sx — 1). Now R[x] ®r M = 3", Rx' ® M, because
R[x] is the free R-module with basis {1, x, x2, .. .}. Hence, each element in
R[x] ®g M has a unique expression of the form ) _; x' @ m;, where m; € M.
Hence,

n
kerhy = {meM: 1®m:(sx—1)2xi®mi}.
i=0

The proof now finishes as the proof of Proposition 4.70. Expanding and equat-
ing coefficients gives equations

1®@m=—-1Qmy, xQsmog=xQmq, ...,

@ smy_; =x"@my,, x"T'®@sm, =0.

It follows that

m=—mq, SMmo="my, ..., SMu_] =my, sm, =0.
Hence, sm = —smg = —m, and, by induction, sim = —m; for all i. In
particular, s"m = —m, and so sty = —sm, = 0in M. Therefore,

kerhy C K, as desired. e

Corollary 4.79. Let S C R be multiplicative and let M be an R-module.

(i) Every elementu € S™'M = S~' ®g M has the formu = s~ ® m for
some s € S and somem € M.

(ii) Every S~'R-module A is isomorphic to S~'M for some R-module M.

(ii1) sl_1 ®m; = 32_1 Q@mrin ST ' Qr M if and only if s(som| — symy) in
M for some s € S.
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Proof.

() fu e ST' ®g M, thenu = Y ;(r;/s;) ® m;, where r; € R, s; € S, and
m; € M. If we define s = [[s; and §; = ]_[j#i sj, then

u= Z(l/si)ri ® mi
= Gi/s)ri @m;
=(1/9)) &iri@m;
=1/)® Y §irim;
=(/s) ®@m,
where m = ) _ §jrim; € M.
(i) The localization map h: R — S~1R allows us to view A as an R-
module [define ra = h(r)a for r € R and a € A]; denote this R-
module by ,A. We claim that A = SR @& 1A as S~!R-modules.

Define f: A - ST'R®r ,Abya > 1 ®a. Now f is an S~' R-map:
if s € Sand a € A, then

felay=1®sla=s"s®@sla=s"'®a=s""f(a).

To see that f is an isomorphism, we construct its inverse. Since A is an
S~!R-module, the function S™'R x ,A — A, defined by (rs~!, a) >
(rs~Ya, is a well-defined R-bilinear function, and so it induces an R-
map S 1R ®r nA — A, which is obviously inverse to f.

(i) Ifs € S with s(som|—syimy) = 0in M, then (s/1)(s2®@m|—s51Qmy) =
0in ST'R ®r M. As s/11is a unit, 5o @ m; — s; ® my = 0, and so
sfl®m1 =s51®m2.

Conversely, if sl_1 Qmp = sz_l ® my in S™! ®z M, then we have
(1/s152)(s2 ® m; — s1 ® mp) = 0. Since 1/sysp is a unit, we have
(s,@m1—s1®m>o) = 0and som|—sym, € ker hy;. By Proposition 4.78,
there exists s € S with s(som1 —symp) =0in M. e

Theorem 4.80. If S C R is multiplicative, then S™'R is a flat R-module.

Proof. 'We must show thatif 0 — A L) B is exact, then so is

0> S 'RepA 2L s 'Rep B.

By Corollary 4.79, every u € S™! A has the form u = s~! ® a for some s € §
anda € A. Inparticular, if u € ker(1® f), then (1® f)(u) = s7'® f(a) = 0.
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Multiplying by s gives 1 ® f(a) = 0in S™!B; that is, f(a) € kerhp. By
Proposition 4.78, there is t € S with 0 = tf(a) = f(ta). Since f is an
injection, fa € ker f = {0}. Hence,0 = 1 ® ta = (1 ® a). But ¢ is a unit in
SR, sothat 1 ®a = 0in S~ A. Therefore, 1 ® f is an injection, and S~IR
is a flat R-module. e

Corollary 4.81. IfS C R is multiplicative, then localization M +— S™'M =
S™'R ®g M defines an exact functor gkMod — s-1gMod.

Proof. Localization is the functor S~'R®p O, and it is exact because S~ R
is a flat R-module. o

Since tensor product commutes with direct sums, it is clear that if M is
a free (or projective) R-module, then S~!'M is a free (or projective) S™'R-
module.

Example 4.82. Let R be a Dedekind ring that is not a PID, and let p be a
nonzero prime ideal in R. Then Ry is a local PID (see Rotman, Advanced
Modern Algebra, p. 950). Hence, if P is a projective R-module, then Py, is
a projective Ry,-module, and so it is free. In particular, if b is a nonprincipal
ideal in R, then b is not free even though all its localizations are free. <«

Proposition 4.83. Let S C R be multiplicative. If B is a flat R-module, then
S~'B is a flat S~' R-module.
Proof. For any S~!R-module A, there is an isomorphism
ST'B@gigA=(S'ROrB)®5 1, A= ST'R®g (B ®r A),
which can be used to give a natural isomorphism
STIB R 1z 0= (ST'R®r 0)(B @ D).

As each factor is an exact functor, the composite S~!'B ®g-1 [ is also an
exact functor; that is, S~!Bisflat. e

We now investigate localization of injective modules, and we begin with
some identities.

Proposition 4.84. If A and B are R-modules, then there is a natural iso-
morphism

¢: STHB®rA) = STIB®s-1x STIA.
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Proof. Every element u € S~ (B ®g A) has the formu = s 'm fors € §
and m € B ®g A, by Corollary 4.79; hence, u = s > a; ® b;.

A X B

AQ®r B S~ (A®gr B)

T~ L

STIB®g1g S7IA

The idea is to define p(u) = ) s_lai ® bj, but, as usual with tensor product,
the problem is whether obvious maps are well-defined. We suggest that the
reader use the universal property of localization to complete the proof. e

The analogous isomorphism for Hom,
S~ Homg(B, A) = Homg-1 x(S"'B, S A),
may not hold. However, there is such an isomorphism when B and R are

restricted.

Lemma 4.85. Let A be an R-algebra, and let N be a finitely presented
R-module. For every A-module M, there is a natural isomorphism

0: Homgr(N, M) — Homa(N Qr A, M),

givenby 6: f — f,where f(n@l) = f(n)foralln € N.

Proof. Assume first that N is a ﬁnitely generated free R-module, say, with
basis {e1,...,e,}; then {e; ® 1, . ® 1} is a basis of the free A-module
N ®r A. Iff N — M is an R- map,deﬁneanA mapf N®rA— Mby
f(e, ® 1) = f(e;) foralli. Itis easy to see that0: f — f is a well-defined
natural isomorphism Homg (N, M) — Homs (N Qr A, M).

Assume now that N is finitely presented, so that there is an exact sequence

RF - R" - N — 0.
This gives rise to the commutative diagram with exact rows.
0 — Homg(N, M) ———— Homg(R", M) — Homg(R*, M)
[
[ le J{e
Y
0 — Homy (N ®g A, M) — Homu (A", M) — Hom, (A¥, M)

The vertical maps 6 are isomorphisms, and so the dashed vertical arrow [which
exists by diagram chasing (Proposition 2.71) and which has the desired for-
mula] is also an isomorphism. The reader may prove naturality. e
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Lemma 4.86. Let B be a flat R-module, and let N be a finitely presented
R-module. For every R-module M, there is a natural isomorphism

Y B ®g Homgp(N, M) — Homg(N, M ®r B),

given by b @ g — gp, where gp(n) = g(n) @ b foralln € N.

Proof. The reader may check that i arises from the R-bilinear function with
domain B x Hompg (N, M) that sends (b, g) +— gp; this map is natural in N,
and it is an isomorphism when N is finitely generated and free. If N is finitely
presented, there is an exact sequence

R 5 R" - N — 0.

Since B is flat, there is a commutative diagram with exact rows.

0 - B ® Hom(N, M) — B ® Hom(R", M) — B ® Hom(R*, M)
wl lw lw
0 —Hom(N, M ® B) = Hom(R", M ® B) = Hom(R*, M ® B)

By the Five Lemma, the first vertical map is an isomorphism because the
second two are. e

Lemma 4.87. Let S C R be multiplicative, and let N be a finitely presented
R-module. For every R-module M, there is a natural isomorphism

@: ST Homg(N, M) — Homg 1 (S7'N, S7' M),

given by g/1 — g, where g(n/1) = g(n) ® 1 foralln € N.

Proof. By definition, S~! Homz(N, M) = S~'R @ g Homg(N, M). Since
S~!R is a flat R-module, Lemma 4.86 gives an isomorphism

S~ Homg(N, M) = Homg(N, S~' M);
but S~!R is an R-algebra, and so Lemma 4.85 gives an isomorphism
Homg (N, S™'M) = Homg 1 (S™'N, S~ M).

The composite is an isomorphism with the desired formula. e

Theorem 4.88. Let R be noetherian and let S € R be multiplicative. If E
is an injective R-module, then S™'E is an injective S~' R-module.
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Proof. By Baer’s Criterion, it suffices to extend any map I — S~!'E toa
map S™'R — S~ 'E, where I is an ideal in S~ R; that is, if i: I — S~ R is
the inclusion, then the induced map

i*: Homg-1x(S™'R, S7'E) — Homg_1x(I, ST E)

is a surjection. Now S~!'R is noetherian because R is, and so [ is finitely
generated; say, I = (r1/s1,...,r,/Sn), where r; € R and s5; € S. There is
an ideal J in R, namely, J = (r, ..., r,), with I = s—1J. Naturality of the
isomorphism in Lemma 4.87 gives a commutative diagram

S~ Homg (R, E) S~ Homg(J, E)

: J

Homg 1 x(S™'R, ST'E) — Homg-1,4(S~'J, ST'E).

Now Homg (R, E) — Homg(J, E) is a surjection, because E is an injective
R-module, and so S~! = S~!'R ®z [ being right exact implies that the top
arrow is also a surjection. But the vertical maps are isomorphisms, and so the
bottom arrow is a surjection; that is, S~!E is an injective S~! R-module. e

Remark. Theorem 4.88 may be false if R is not noetherian. E. C. Dade,
“Localization of injective modules,” J. Algebra 69 (1981), 415-425, showed,
for every commutative ring k, that if R = k[X], where X is an uncountable
set of indeterminates, then there are a multiplicative subset S € R and an
injective R-module E such that S~!E is not an injective S~! R-module.

If, however, R = k[X], where k is noetherian and X is countable, then
S~!E is an injective S~! R-module for every injective R-module E and every
multiplicative subset S € R. <«

Here are some globalization tools.

Notation. In the special case S = R — p, where p is a prime ideal in R, we
write

ST'M =S5""®r M = M,.
If f: M — N isan R-map, write fy: My — Np, where fy = 1g, ® f.
We restate Corollary 4.74(iv) in this notation. The function f: q > ¢y is

a bijection from the family of all prime ideals in R that are contained in p to
the family of prime ideals in Ry,.

Proposition 4.89. Let [ and J be ideals in a domain R. If Iy, = Jn, for
every maximal ideal wm, then [ = J.



202

SPECI ¢ RINGS CH. 4

Proof. Take b € J, and define

(I:b)={reR:rbell

Let m be a maximal ideal in R. Since Iy, = Jy, therearea € [ and s ¢ m
with b/1 = a/s. As R is a domain, sb = a € I, sothats € (I : b); but
s ¢ m,sothat ( : b)) € m. Thus, (I : b) cannot be a proper ideal, for it is not
contained in any maximal ideal. Therefore, (I : b) = R; hence, 1 € (I : b)
and b = 1b € I. We have proved that J C I, and the reverse inclusion is
proved similarly. e

Proposition 4.90. Let R be a commutative ring.

®

(i)

(i)

(iv)

If M is an R-module with My, = {0} for every maximal ideal m, then
M = {0}.

If f: M — N isan R-map and fun: My — Np is an injection for
every maximal ideal w, then f is an injection.

If f: M — N isan R-map and fo: My — Nu is a surjection for
every maximal ideal w, then f is a surjection.

If f: M — N isan R-map and fo: My — Ny is an isomorphism for
every maximal ideal w, then f is an isomorphism.

Proof.

®

(ii)

(iii)

(iv)

If M # {0}, then there is m € M with m # 0. It follows that the
annihilator / = {r € R : rm = 0} is a proper ideal in R, for 1 ¢ I, and
so there is some maximal ideal m containing /. Now 1 @ m = 0 in My,,
so that m € kerhys. Proposition 4.78 gives s ¢ m with sm = 0in M.
Hence, s € I € m, and this is a contradiction. Therefore, M = {0}.

There is an exact sequence 0 —- K — M i> N, where K = ker f.
Since localization is an exact functor, there is an exact sequence

0— K — My ELN N
for every maximal ideal m. By hypothesis, each fy, is an injection,
so that Ky, = {0} for all maximal ideals m. Part (i) now shows that
K = {0}, and so f is an injection.

There is an exact sequence M l> N — C — 0, where C = coker f =
N/im f. Since tensor product is right exact, C, = {0} for all max-
imal ideals m, and so C = {0}. But f is surjective if and only if
C = coker f = {0}.

This follows at once from parts (ii) and (iii). e
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4.8 Polynomial Rings

In the mid-1950s, Serre proved that if R = k[xy, ..., x;;], where k is a field,
then every finitely generated projective R-module P has a finitely generated
free complement F; that is, P @ F is free. Serre wondered® whether every
projective k[x1, ..., x;;]-module is free (for projective and free modules over
R have natural interpetations in algebraic geometry). This problem was the
subject of much investigation until 1976, when it was solved in the affirma-
tive by Quillen and Suslin, independently. We refer the reader to T. Y. Lam,
Serre’s Problem on Projective Modules, for a more thorough account. The
last chapter of Lam’s book describes recent work, after 1976, inspired by and
flowing out of the work of Serre, Quillen, and Suslin.

Definition. Let R be a commutative ring and let R" denote the free R-
module of rank n (recall that every commutative ring has IBN). A unimodular
column is an element « = (ay,...,a,) € R" for which there exist b; € R
with a1b; +--- + a,b, = 1.

A commutative ring R has the unimodular column property if, for every
n, every unimodular column is the first column of some n X n invertible matrix
over R.

If ¢; denotes the column vector having first coordinate 1 and all other
entries 0, then o € R” is the first column of a matrix M over R if and only if

o = Me;.

The first column a = [a;1] of an invertible matrix M = [q;;] is always uni-
modular. Since M is invertible, det(M) = u, where u is a unit in R, and
Laplace expansion down the first column gives det(M) = u = ), a;1d;.
Hence, ), aii(u='d;) = 1, and « = Me; is a unimodular column. The
unimodular column property for R asserts the converse.

Proposition 4.91. Let R be a commutative ring. If every finitely generated
projective R-module is free, then R has the unimodular column property.

Proof. Ifa = (ay,...,a,) € R" is a unimodular column, then there exist
b;i € R with ) ; a;b; = 1. Define ¢: R" — Rby (ri,...,rp) — Y ;rib;.
Since ¢ () = 1, there is an exact sequence

0—>K—>R”1>R—>O,

3Serre wrote, on page 243 of “Faisceaux algebriques cohérents,” Annals Math. 61
(1955), 197-278, “... on ignore s’il existe des A-modules projectifs de type fini qui ne
soient pas libres” (here, A = k[xq, ..., x,]).
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where K = ker ¢. As R is projective, this sequence splits and
R" =K & ().

By hypothesis, K is free (of rank n — 1). If «, ..., o, is a basis of K, then
adjoining « gives a basis of R". If €1, ..., ¢, is the standard basis of R"
(i.e., & has ith coordinate 1 and all other coordinates 0), then the R-map
T: R" — R", with Te; =« and Te; = «; fori > 2, is invertible, and the
matrix of 7" with respect to the standard basis has first column «. e

In general, the converse of Proposition 4.91 is false. For example, we
know that [l has nonfree projectives, yet it is not difficult to see that Ils does
have the unimodular column property.

Definition. A finitely generated R-module P is stably free if there exists a
finitely generated free R-module F with P @ F free.

Example 4.92.
(i) Every finitely generated free module is stably free.
(i1) If P and Q are stably free, then P & Q is stably free.

(iii) Every stably free module is projective, for it is a direct summand of
a free module. However, there are (finitely generated) projective R-
modules that are not stably free. For example, if R = I, then R =
I & J, where I = 1; and J = [3. An easy counting argument shows
that there is no finitely generated free lg-module F with I & F free.

(iv) A direct summand of a stably free module need not be stably free. After
all, every projective module is a direct summand of a free (hence, stably
free) module, yet we have seen in (iii) that projectives need not be stably
free. However, a complement of a stably free direct summand is stably
free: if K = K’ @ K", where both K and K’ are stably free, then it is
easy to see that K” is also stably free.

(v) Kaplansky exhibited a stably free R-module that is not free, where R
is the ring of all continuous real-valued functions on the 2-sphere [see
R. G. Swan, “Vector bundles and projective modules,” Trans. AMS 105
(1962), 264-277]. This example has been modified, and there is a com-
pletely algebraic proof that if R = Z[x, y, z]/(x*> + y*> + z> — 1), then
there is a stably free R-module that is not free [see M. Kong, “Euler
classes of inner product modules,” J. Algebra 49 (1977), 276-303].
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(vi) Eilenbergs’s observation (see Exercise 3.5 on page 114) that every pro-
jective module has a free complement (which, of course, need not be
finitely generated) shows why we assume, in the definition of stably
free, that complements are finitely generated. <«

Theorem 4.93 (Serre).  If k is a field, then finitely generated projective
klx1, ..., xm]-modules are stably free.

Proof. See Theorem 8.48. e

Proposition 4.94. If a commutative ring R has the unimodular column prop-
erty, then every stably free R-module P is free.

Proof. By induction on the rank of a free complement, it suffices to prove
that if P @ R = R", then P is free. Let €1, ..., &, be the standard basis of
R",and let w: R" — R be an R-map with kerw = P. Since 7 is surjective,

there exists « = (ay,...,a,) € R" with 1 = w(x) = > a;7(g;); that is,
« is a unimodular column. By hypothesis, there is an invertible matrix M
with first column ¢, and with other columns, say, ao, ..., «,. Define an R-

map T: R" — R" by T(s;)) = Meg;. If n(aj) = A; € Rfor j > 2,
then the elementary column operations o; — a;, where a;. = a; — Aja,
yield the invertible matrix M’ having columns «, aé, ooy If j > 2, then
7[(0:}) = m(a;) — Ajm(a) = O [for w(a) = 1]. Thus, the R-isomorphism
determined by M’, namely, 7'(¢1) = o and T'(¢;) = oz;. for j > 2, satisfies
a} =T'(¢j) e kerm = P forall j > 2.

We claim that the restriction 7% = T'|(e2, ..., &,): (62, ..., 6,) — P
is an R-isomorphism. We have just seen that im7* < P. Of course, T*
is injective, for T’ is. To see that T* is surjective, take B € P. Now 8 =
T'(rie1 + 8), where § = > 7 ,rie;. Since B € P, we have B — T'(8) =
r1T'(e1) = ria € P N (@) = {0}. Hence, B € im T*, T* is an isomorphism,
and P is free. e

Corollary 4.95. Ifk[xi, ..., xn] has the unimodular column property, where
k is a field, then every finitely generated projective k[xy, ..., Xy |-module is
free.

Proof. This follows at once from Theorem 4.93. e

We are now going to give Suslin’s solution of Serre’s problem; afterward,
we will sketch Quillen’s solution. Let us begin with a technical result that
is the heart of the classical Noether Normalization Lemma. Recall that the

total degree of a monomial rx{' ---x" is ji 4+ -+ j,; a general polynomial
a € k[xy,...,x,] is a sum of monomials, and its total degree is defined as

the largest total degree of its monomial summands.
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Proposition 4.96 (Noether). Let R = k[xy, ..., x|, where k is a field, let
a € R have (total) degree 8, and let b = § + 1. Define

y = xms
and, for1 <i <m — 1, define
vi=xi—xy =x—y M
Then a = ra’, wherer € k and a’ € (k[yl, e ym_l])[y] is monic.
Proof. Note that k[yy, ..., ym—1] is a polynomial ring, that is, the ys are

independent transcendentals, for the defining equations give an automorphism
of R (with inverse given by x,,, > x,,, and x; — x; —1—xfj1mﬂ forl <i <m-—1)
that restricts to an isomorphism k[x1, ..., Xu—1] = k[y1, ..., Ym—1].
Denote m-tuples (ji, ..., jm) € N by (), and equip N”* with the usual
dot product: (j) - (j') = jij; + -+ jmJ,. We denote the specific m-
tuple @Y pm=2 .. b, 1) by v. Of course, the exponents of the monomial

x{ b -xrjn’" give rise to (j). Write the polynomial a in this notation:

J Jm
a=7 rgx
)
where r(jy € k and r(;) # 0. Substituting the equations in Eq. (1), the (j)th
monomial is

m—1_ m—2_ . .
rGyOn + Y7 ) + YTy Ay Ity

Expand and separate the “pure” power of y from the rest to obtain

r (Y + fH O Y1),

where the polynomial f;) has at least one positive power of some y;; the
highest exponent of any such y; is at most the total degree, and so it is strictly
less than b. Thus, 0 < j; < b for each j; occurring in any (j). Each (j) -v =
jlbm_1 + jgb’"‘2 + - 4 jm—1b+ jn is the expression of a positive integer in
base b; the uniqueness of this b-adic expression says that if (j) # ('), then
(j) - v # (j') - v. Thus, there is no cancellation of terms in ), r(hHy 9,
the pure part of a. If D is the largest (j) - v, then

a=rDyD+g()’1,-~7)’m—l,)’),

where the largest exponent of y occurring in g = > ;) _p f(;) is smaller
than D. As rp is a nonzero element of the field k, we have a = rpa’, where
a =yl + rl_)lg(yl, .-vsYm—1,Y), amonic polynomial in y. e
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Lemma 4.97 (Suslin Lemma).  Ler B be a commutative ring, let s > 1,
and consider polynomials in B[y]:

fo) =y +ay™ "+ +ag
g(y) = b1y ' 4+ by,

Then, for each j with 1 < j < s — 1, the ideal (f, g) € Bly] contains a
polynomial of degree < s — 1 having leading coefficient b;.

Proof. Let I be the set consisting of 0 and all leading coefficients of 4 (y) €
(f, g) with deg(h) < s — 1;itis clear that / is an ideal in B containing b;. We
prove, by induction on j > 1, that I contains by, ..., b; forall j < s. Define

g'(y) € (f,g) by

&) =y —bif() =Y (bit1 —bia)y ™.

i=1

By induction, 7 contains the first j — 1 coefficients of g’(y), the last of which
is bj — blaj_l. It follows that bj el. o

Observe that performing elementary row operations on any n X ¢ matrix
L yields a matrix N L, where N € GL(n, R), the group of all invertible n x n
matrices over R. Thus, if « € R" is an n x 1 column vector and N« is the
first column of some invertible matrix M, then « = (N~ 'M)eg; is also the
first column of some invertible matrix.

Proposition 4.98 (Horrocks). Let R = B[y], where B is a local ring, and
leta = (ay, ...,an) € R" be a unimodular column. If some a; is monic, then
o is the first column of some invertible matrix in GL(n, R).

Proof. (Suslin) If n = 1 or 2, then the conclusion is true for any commuta-
tive ring R. For example, if « = (a1, az) and a1b; + axby = 1, then « is the

ay —by
ay b

tion on s, the degree of the monic polynomial a; (there is no loss in generality
assuming a1 is monic). If s = 0, then a; = 1, and our preceding remark about
row operations, applied here to the column vector «, yields Na = €1, which
is the first column of the n x n identity matrix. Thus, we may assume that
s > 0; moreover, after applying elementary row operations to the column «,
we may assume that deg(a;) < s — 1 foralli > 2.

Let m be the (unique) maximal ideal in B. Now mR consists of those
polynomials having all coefficients in m. The column

first column of [ ] Therefore, we may assume n > 3. We do an induc-

o= (a;+mR,...,a, +mR) € R"/mR"
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is unimodular over (B/m)[y] (for « is unimodular). If ¢; € mR foralli > 2,
then a; + m would be a unit in (B/m)[y]; but B/m is a field, and the non-
constant polynomial @;(y) in the PID (B/m)[y] cannot be a unit. Thus, we
may assume that a>(y) ¢ mR; say, ax(y) = blys_1 + - - + by, where some
b;j ¢ m. Since B is a local ring, b; is a unit. By Suslin’s Lemma, the ideal
(a1, az) € R contains a monic polynomial of degree < s — 1. Sincen > 3, we
may perform an elementary row operation of adding a linear combination of
ay and a» to a3 to obtain a monic polynomial in the third coordinate of degree
< s — 1. The inductive hypothesis applies to this new version of «, and this
completes the proof. e

Let R = B[y], where B is a commutative ring. In the next proposition,
we will denote a matrix M over R by M(y) to emphasize the fact that its
entries are polynomials in y. If » € R, then the notation M (r) means that
every occurrence of y in M (y) has been changed to r.

The next proof is ingenious!

Proposition 4.99. Let B be a domain, let R = B[y], and let a(y) be a
unimodular column at least one of whose coordinates is monic, say, o(y) =

(ocl(y), e, oz,,(y)). Then
a(y) = M()B.
where M (y) € GL(n, R) and B is a unimodular column over B.
Proof. (Vaserstein) Define
I ={b e B:GL(n, R)a(u + bv) = GL(n, R)a(u) forall u, v € R}.
One checks that [ is an ideal in B; for example, if b, b’ € I, then
GL(n, R)a(u + bv + b'v) = GL(n, R)a(u + bv) = GL(n, R)a(u),

sothatb +b" € I.
IfIl =B,thenl € I;setu =y,b=1,and v = —y, and obtain

GL(n, R)a(y) = GL(n, R)x(0).

Thus, a(y) = M(y)x(0) for some M(y) € GL(n, R). Since «(0) is a uni-
modular column over B, the proposition is true in this case.

We may now assume that / is a proper ideal in B, and so I C J for some
maximal ideal J in B. Since B is a domain, B is a subring of the localization
Bj. As By is alocal ring and «(y) is a unimodular column over B;[y] having
a monic coordinate, Proposition 4.98 applies:

a(y) = M(yey,
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for some M (y) = [m;;(y)] € GL(n, B,[y]). Adjoin a new indeterminate z to
Bj[y], and define a matrix

N(y,z) = M()M(y +2)~" € GL(n, Byly, z]).

Note that the matrix M (y + z) is invertible: if M(y)_1 = [h;j(y)], then it is
easy to see that M (y + z)_1 = [h;j(y + 2)], for the map B;[y] — By[y, zl,
given by y — y + z, is a By-algebra map.

Now N (y, 0) = I,, the n x n identity matrix. Since a(y) = M (y)ey, it
follows that a(y + z) = M (y + z)¢e1, and

N(y,2)a(y +2) = N(y, DMy +2)e1 = M(y)e; = a(y). (2)

Each entry of N(y, z) has the form f;;(y) + gij(y,z), where each mono-
mial in g;;(y, z) involves a positive power of z; that is, g;;(y, 0) = 0. Since
N(y,0) = I, it follows that each f;;(y) = 0 or 1. Hence, the entries of
N (y, z) contain no nonzero terms of the form X yi fori > 0 and A € By; that
is, hij(y,z) =r +gij(y,z), where r = 0 or r = 1. If b is the product of the
denominators of all the coefficients of the entries in N(y, z), then h;;(y, bz)
has all its coefficients in B[y, z]. The definition of the localization B; shows
that b ¢ J, and so b ¢ 1. Equation (2), with bz playing the role of z, gives

GL(n, Bly, zDa(y + bz) = GL(n, Bly, zDa(y).

For fixed u, v € R = Bly], define a B-algebra map ¢: B[y, z] — Bl[y] by
¢(y) = u and ¢(z) = v. Applying ¢ to the last displayed matrix equation
gives

GL(n, R)a(u + bv) = GL(n, R)a(u),

and this contradicts b ¢ I. e

Theorem 4.100 (Quillen-Suslin). Ifk is a field, then every finitely gener-
ated projective k[x1, . .., X ]-module is free.

Proof. Corollary 4.95 says that it suffices to prove that R = k[xy, ..., x;]
has the unimodular column property, and we prove this by induction on m.
The base step is true, for Proposition 4.91 says that k[x1], as any PID, has
the unimodular column property. For the inductive step, let @ = (ay, ..., an)
be a unimodular column over k[x1, ..., x;]. We may assume that a; # 0;
hence, by Noether’s Proposition, there is r € k with a; = raj for a| €
k[y1, ..., Ym—1](y) a monic polynomial in y (where y and the y; are defined
in Proposition 4.96). Since £ is a field and r € k is nonzero, r is a unit, and
so there is no loss in generality in assuming that a; = aj; that is, a; is monic.
Thus, Proposition 4.99 applies, and

o= MB,
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where M € GL(n, k[x1, ..., x;;]) and B is a unimodular column over B =
k[y1, ..., Ym—1].- By induction, B has the unimodular column property, so
that 8 = Neg| for some N € GL(n, B). But MN € GL(n, k[x1, ..., xn]),
because B C k[x1, ..., X;], and so

@ = (MN)ey;
that is, « is the first column of an invertible matrix over k[x{, ..., x;;]. o

Suslin’s proof generalizes to polynomial rings with coefficient rings other
than fields once one relaxes the hypotheses of Noether’s Proposition. We now
sketch Quillen’s solution, which also applies to more general coefficient rings.

In 1958, Seshadri proved that if R is a PID, then finitely generated projec-
tive R[x]-modules are free; it follows that if k is a field, then finitely generated
k[x, y]-modules are free. One of the ideas used by Seshadri is that of an ex-
tended module.

Definition. If R is a commutative ring and A is an R-algebra, then an A-
module P is extended from R if there is an R-module Py with P = A Qg Py.

Example 4.101.

(1) If V is a free R-module, then AQg V is a free A-module, because tensor
product commutes with direct sums. Similarly, since a projective R-
module is a direct summand of a free module, any A-module extended
from a projective R-module is itself projective.

(i) Every free A-module F is extended from R: if B = {¢; : i € [}isa
basis of F and Fj is the free R-module with basis B, then F = AQg Fy.

(iii) Not every module is extended. For example, if A = k[x], where k
is a field, then every k-module V is a vector space over k and, hence,
every extended module is free. Thus, any nonfree k[x]-module is not
extended. <«

A projective A-module need not be extended, but Quillen proved the fol-
lowing result.

Theorem (Quillen). Let R be a commutative ring, and let P be a finitely
generated projective R[x]-module. If every R[x] ®r P is extended from the
localization Ry, where m is a maximal ideal in R, then P is extended from R.

Proof.  D. Quillen, “Projective modules over polynomial rings,” Invent. Math.
36 (1976), 167-171. e

Here is Quillen’s main theorem.
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Theorem (Quillen). Let € be a class of commutative rings such that

(1) if R € €, then R(x) € €, where R(x) denotes the ring of all rational
functions of the form f(x)/g(x) with f(x), g(x) € R[x],

(ii) if R € € and m is a maximal ideal in R, then projective Ru[x]-modules
are free.

Then finitely generated projective R[xy, ..., x,|-modules are extended from
R forall R € €Candallm > 1.

Proof. See Lam, Serre’s Problem on Projective Modules, p. 177. e

Theorem 4.102 (Quillen—Suslin). If k is a field, then every finitely gener-
ated projective k[x1, . .., Xy ]-module is free.

Proof. The class € of all fields satisfies the conditions of Quillen’s theorem.
If R is a field, then R(x) = Frac(R[x]) € €. To check (ii), note that the only
maximal ideal m in a field R is m = {0}, so that R, = R, Rn[x] = R[x] is
a PID, and (finitely generated) projective R[x]-modules are free. Since R is
a field, every R-module is a vector space, hence is free, and so every module
extended from R is free. e

It can be shown that the classes of all PIDs as well as of all Dedekind rings
satisfy Quillen’s condtions; hence, finitely generated R[x1, ..., Xx;;]-modules
are extended from R. If R is a PID, it follows that every such module is free.
If R is Dedekind, then finitely generated projective R-modules Py need not be
free; however, one knows that Py = Fy @ J, where Fj is a free R-module and
J is an ideal in R (see Rotman, Advanced Modern Algebra, p. 964). Thus,

every finitely generated projective R[xy, ..., X, ]-module has the form F& Q,
where F is free and Q = R[xy,...,x,] ®g J. If R is a Priifer ring, then
every finitely generated projective R[x1, ..., x,]-module is extended from R

(see Fontana—Huckaba—Papick, Priifer Domains, p. 211); in particular, if R is
a Bézout ring, then every such module is free.

The noncommutative version of Quillen’s Theorem is false: Ojanguren
and Sridharan, “Cancellation of Azumaya algebras,” J. Algebra 18 (1971),
501-505, gave an example of a division ring D and a nonfree projective
D[x, y]-module (where the indeterminates x and y commute with constants
in D).

The following problem remains open. Let R be a commutative noetherian
ring. We say that R has Property (E) if, for all n > 1, every finitely generated
projective R[x1, ..., x;]-module is extended from R; we say that R is regu-
lar if every finitely generated R-module has a projective resolution of finite
length. The Bass-Quillen Conjecture asks whether every regular ring of finite
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Krull dimension has property (E). See the last chapter of Lam, Serre’s Prob-
lem on Projective Modules, for an account of recent progress on this problem.

We summarize some results we have proved about special R-modules
when R is constrained.
(1) R semisimple: every R-module is projective, injective, and flat.
(i) R von Neumann regular: every R-module is flat.

(iii) R hereditary: every R-submodule of a projective is projective; every
quotient of an injective R-module is injective.

(iv) R Dedekind (= hereditary domain): divisible R-modules are injective.

(v) R semihereditary: finitely generated R-submodules of projectives are
projective; submodules of flat R-modules are flat.

(vi) R Priifer (= semihereditary domain): torsion-free R-modules are flat;
finitely generated torsion-free R-modules are projective.

(vii) R quasi-Frobenius: projective R-modules are injective.

(viii) R semiperfect: projective covers exist; direct products of projective R-
modules are projective.

(ix) R local: projective R-modules are free.

(x) R = k[X] = polynomial ring in several variables over a field k: finitely
generated projective R-modules are free.

(xi) R noetherian: direct sums of injective R-modules are injective.



Setting the Stage

We plan to use Homological Algebra to prove results about modules, groups,
and sheaves. A common context for discussing these topics is that of abelian
categories; moreover, categories of complexes, the essential ingredient needed
to define homology, are also abelian categories. This chapter is devoted to dis-
cussing this circle of ideas.

5.1 Categorical Constructions

Imagine a set theory whose primitive terms, instead of set and element, are
set and function. How could we define bijection, cartesian product, union,
and intersection? Category Theory forces us to think in this way, for functors
do not recognize elements. One nice aspect of thinking categorically is that
we can see unexpected analogies; for example, we shall soon see that disjoint
union in Sets, direct sum in gkMod, and tensor product in ComRings are
special cases of the same categorical notion. We now set ourselves the task
of describing various constructions in Sets or in Ab in such a way that they
make sense in arbitrary categories.

Let us begin by investigating the notion of disjoint union of subsets. Two
subsets A and B of a set can be forced to be disjoint. Consider the cartesian
product (AU B) x {1, 2} and its subsets A’ = A x {1} and B’ = B x {2}. Itis
plain that A’ N B’ = &, for a point in the intersection would have coordinates
(a, 1) = (b, 2), which cannot be, for their second coordinates are not equal.
We call A’ U B’ the disjoint union of A and B, and we note that it comes
equipped with two functions, namely,«: A —- A’UB and 8: B — A'UB/,
defined by a: a + (a, 1) and B: b +> (b,2). Denote A’ U B’ by A U B.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 213
DOI 10.1007/978-0-387-68324-9_5, (© Springer Science+Business Media LLC 2009
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Given functions f: A — X and g: B — X, for some set X, there is a unique
function #: A LU B — X that extends both f and g; namely,
fla) ifu=(a,1)eA,
O(u) = . ,
gb) ifu=(®,2)eB.
The function 6 is well-defined because A’ N B’ = &. We have described
disjoint union categorically (i.e., with diagrams).
In Category Theory, we often view objects, not in isolation, but together

with morphisms relating them to other objects; for example, objects may arise
as solutions to universal mapping problems.

Definition. If A and B are objects in a category C, then their coproduct is
a triple (A U B, a, B), where A U B is an objectin C and : A — A U B,
B: B — AU B are morphisms, called injections,' such that, for every object
X in C and every pair of morphisms f: A — X and g: B — X, there exists
a unique morphism 0: A U B — X making the diagram commute: o = f
and 68 = g.

Here is a proof that the disjoint union ALB = A’"UB’ € (AUB) x {1, 2}
is a coproduct in Sets. If X is any set and f: A — X and g: B — X are
functions, we have already seen that the function #: A LU B — X, given by
O(a,1) = f(a) and 6(b,2) = g(b), makes the diagram commute. Let us
prove uniqueness of 6. If ¥ : AU B — X satisfies o = f and ¥ = g,
then ¥ (a, 1) = f(a) = 6(a, 1) and ¥ (b,2) = g(b) = 0(b,2). Therefore,
Y agrees with @ on A’ U B’ = A U B, and so ¥y = 6. We have proved that a
coproduct of two sets exists in Sets, and that it is the disjoint union.

It is not true that coproducts always exist; in fact, it is easy to construct
examples of categories in which a pair of objects does not have a coproduct
(see Exercise 5.6 on page 227).

Proposition 5.1. [f A and B are left R-modules, then their coproduct in
rMod exists and is the direct sum A @ B.

I'We will introduce the notion of monomorphism later. Exercise 5.57 on page 321 says
that the injections «, S are, in fact, monomorphisms.
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Proof. 'The statement of the proposition is not complete, for a coproduct
requires morphisms « and 8. The underlying set of C = A@® B is the cartesian
product A x B, and we definea: A - Cbya:a+ (a,0)and f: B - C
by B: b+ (0, b). Of course, o and B are R-maps.

Now let X be a module, and let f: A — X and g: B — X be R-
maps. Define 6: C — X by 0: (a,b) — f(a) + g(b). First, the diagram
commutes: if a € A, then fx(a) = 0(a,0) = f(a) and, similarly, if b € B,
then 68 (b) = 6(0, b) = g(b). Second, 6 is unique. If ¥ : C — X makes the
diagram commute, then ¥ (a,0) = f(a) for alla € A and ¥ (0,b) = g(b)
for all b € B. Since ¢ is an R-map, we have

V(a,b) =yl(a,0)+(0,b)] =¥ (a,0)+ v (©0,b) = fla) + gb).
Therefore, ¥ =60. o

Proposition 5.2. Ifk is a commutative ring and A and B are commutative
k-algebras, then A Q. B is the coproduct in the category of commutative k-
algebras.

Proof. Definea: A > AQyBbyw: at> a®l,anddefine f: B - AQiB
by B: b — 1 ® b; note that both @ and B are k-algebra maps. Let X be a
commutative k-algebra, and consider the diagram

N

AQrB—-————— > X

where f and g are k-algebra maps. The function ¢: A x B — X, given by
(a,b) — f(a)g(b), is easily seen to be k-bilinear, and so there is a unique
map of k-modules ®: A ®; B — X with ®(a ® b) = f(a)g(b). To prove
that © is a k-algebra map, it suffices to prove that ©((a ® b)(a’ ® b)) =
O@®b)®(@ ®b'). Now

O((a®b)(a' ®b")) = Oaa’ @ bb") = f(a) f(a)gb)g®).

On the other hand, ©(a ® b)O(a’ @ b') = f(a)g(b) f(a)g(b). Since X is
commutative, f(a’)g(b) = g(b) f(a’), and so © does preserve multiplication.

To prove uniqueness of ®, let ®: A ® B — X be a k-algebra map
making the diagram commute. In A ®; B, wehavea ®b = (a® 1)(1 ®b) =
a(a)B(b), where a € A and b € B. Thus,

P(a ®b) = P(a(a)B(b) = P(a(a))P(B(D)) = f(a)g(b) = Ola D).
Since A ® B is generated as a k-module by alla ® b, we have ¥ = ®. o
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We know that if (x) and (y) are infinite cyclic groups, then each is a free
abelian group and (x) @ (y) is a free abelian group with basis {x, y}. If k is a
commutative ring, then the polynomial ring k[x] is a free k-algebra with basis
{x} (given any k-algebra A and any a € A, there exists a unique k-algebra
map ¢: k[x] — A with ¢(x) = a). In light of Proposition 5.2, we expect that
k[x] ®x k[y] is a free commutative k-algebra with basis {x, y}. Exercise 5.5
on page 226 says that this is, in fact, true; moreover, k[x] ®; k[y] = k[x, y].

In Chapter 2, we used the structure of the proof of Proposition 2.44 as
a strategy for proving uniqueness to isomorphism of solutions to universal
mapping problems. We are now going to describe a second strategy.

Definition. An object A in a category C is called an initial object if, for
every object X in C, there exists a unique morphism A — X.

The empty set @ is an initial object in Sets, the zero module {0} is an
initial object in pMod, and O is the initial object of the natural numbers N
viewed as a partially ordered set. On the other hand, a category may not have
an initial object; for example, Z, viewed as a partially ordered set, has no
initial object.

Lemma 5.3. Any two initial objects A, A’ in a category C, should they exist,
are isomorphic. In fact, the unique morphism f: A — A’ is an isomorphism.

Proof. By hypothesis, there exist unique morphisms f: A — A’ and
g: A’ — A. Since A is an initial object, the unique morphism 2: A — A
must be the identity: 7 = 14. Thus, the composites gf: A — A and
fg: A” — A’ are identities, and so f: A — A’ is an isomorphism. e

Proposition 5.4. IfC is a category and if A and B are objects in C, then any
two coproducts of A and B, should they exist, are isomorphic.

Proof. 1If C is a coproduct of A and B, then there are morphisms o: A — C
and 8: B — C. Define a new category D whose objects are diagrams
AL x & B,

where X isinobj(C) and y: A — X and §: B — X are morphisms. Define a
morphism in D to be a triple (14, €, 1¢), where 0 is a morphism in C making
the following diagram commute:

ALty <% p

a) o |1s

A—>X'<=—B.
J/, 8!
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Define composition in D by (14, ¥, 1¢)(14,6, 1¢c) = (14, ¥60, 1¢). Itis
easy to check that D is a category and that a coproduct in C is an initial ob-
ject in D. By Lemma 5.3, coproducts in a category are unique to (unique)
isomorphism if they exist. e

Here is an illustration of this uniqueness. If A, B are submodules of a
module M with A + B = M and A N B = {0}, then their internal direct sum
A @ B is isomorphic to their external direct sum viaa + b +— (a, b).

Remark. Informally, an ordered pair (S, (¢;)iey) occurring in a commuta-
tive diagram,, where S is an object and the ¢; are morphisms having domain
or target S, is a solution to a universal mapping problem if every other such
ordered pair factors uniquely through S. There is a “metatheorem” which
states that solutions, if they exist, are unique to isomorphism; indeed, such an
isomorphism is itself unique. The proof just given is the prototype for proving
the metatheorem (if we wax categorical, then the statement of the metatheo-
rem can be made precise, and we can then prove it; see Mac Lane, Categories
for the Working Mathematician, Chapter 11, for appropriate definitions, state-
ment, and proof). <«

Here is the dual definition (obtained by reversing all arrows).

Definition. If A and B are objects in a category C, then their product is
a triple (A N B, p,q), where A B is an objectin C and p: AN B — A,
g: ANB — B are morphisms, called projections,” such that, for every object
X € C and every pair of morphisms f: X — A and g: X — B, there exists
a unique morphism 6: X — A n B making the diagram commute.

A
>, N
ANB=<-————- X

S,

Example 5.5. We claim that the (categorical) product of two sets A and B
in Sets is their cartesian product A x B. Define projections p: A x B — A
by p: (a,b) = aandg: A x B — Bbygq: (a,b) — b. If X is a set and
f: X — Aand g: X — B are functions, then the reader may show that
0: X - A X B,definedby 0: x — (f(x),g(x)) € A x B, is the unique
function making the diagram commute. <«

2Wwe will introduce the notion of epimorphism later. Exercise 5.57 on page 321 says
that the projections p, g are, in fact, epimorphisms.
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Definition. An object 2 in a category C is called a ferminal object if, for
every object C in C, there exists a unique morphism X — .

Every one-point set is a terminal object in Sets [the empty set & is not a
terminal object in Sets because Homgets (X, @) = @ for every nonempty set
X]. The zero module {0} is a terminal object in gMod, but N, viewed as a
partially ordered set, has no terminal object.

The solution to a universal mapping problem is an object (with mor-
phisms) defined in terms of a diagram D; the dual object is defined as the
solution to the universal mapping problem posed by the dual diagram; that
is, the diagram obtained from D by reversing all its arrows. For example,
initial and terminal objects are dual, as are coproducts and products. There
are examples of categories in which an object and its dual object both exist,
there are categories in which neither exists, and there are categories in which
an object exists while its dual does not exist. For example, N has an initial
object but no terminal object; —N = {—n : n € N} has a terminal object but
no initial object; Z has neither initial objects nor terminal objects.

Lemma 5.6. Any two terminal objects 2, Q' in a category C, should they
exist, are isomorphic. In fact, the unique morphism f: Q' — Q is an isomor-
phism.

Proof. Just reverse all the arrows in the proof of Lemma 5.3; that is, apply
Lemma 5.3 to the opposite category C7. e

Proposition 5.7. If A and B are objects in a category C, then any two prod-
ucts of A and B, should they exist, are isomorphic.

Proof. Adapt the proof of the prototype, Proposition 5.4; products are ter-
minal objects in a suitable category. e

What is the categorical product of two modules?

Proposition 5.8. If R is a ring and A and B are left R-modules, then their
(categorical) product AT B exists; in fact,

ANBZ= A® B.

Remark. Thus, the product and coproduct of two objects, though distinct in
Sets, coincide in rkMod. <«

Proof. In Proposition 2.20(iii), we characterized M = A @ B by the exis-
tence of projections and injections

A M

. Tl&
>

s~



5.1 CATEGORICAL CONSTRUCTIONS 219

satisfying the equations
pi=14,qj=1p, pj=0,qi =0, and ip+ jg=1y. )

If Xisamodule and f: X — A and g: X — B are homomorphisms, define
0: X > A® Bby6 =if + jg. The product diagram commutes:

forall x € X, pO(x) = pif(x)+ pjg(x) = pif(x) = f(x) [using Eq. (1)],
and, similarly, g6 (x) = g(x). To prove the uniqueness of 8, note that 1, =

ip+ jg,sothaty = 1y =ip¥ + jqu =if + jg=6. e

Coproducts exist in Groups; if G, H are groups, then their coproduct is
called a free product, and it is denoted by G * H ; free groups turn out to be free
products of infinite cyclic groups (analogous to free abelian groups being di-
rect sums of infinite cyclic groups). If G and H are groups, then Exercise 5.9
on page 227 shows that the direct product G x H is the categorical product
G 1 H in Groups. Thus, coproduct and product are distinct in Groups.

There is a practical value in recognizing coproducts in categories. For
example, Exercise 5.7 on page 227 shows that wedge, (X V Y, zp), is the
coproduct in Top,, the category of pointed spaces. The fundamental group
is a functor m1: Top, — Groups. Since free product is the coproduct in
Groups, a reasonable guess (which is often correct) is that 71 (X V Y, z9) =
1 (X, x9) *x 1 (Y, yo). With a mild hypothesis on X Vv Y, this is a special case
of van Kampen’s theorem.

If F: C — 7D is a contravariant functor and a U b € obj(C), then it
is reasonable to guess (often true) that F(a LI b) = a m b. For example,
Exercise 5.6 on page 227 says that if a partially ordered set X is viewed as
a category and if a, b € X, then their coproduct is their least upper bound
a Vv b and their product is their greatest lower bound a A b. Let E/k be a
finite Galois extension, let £ be the family of all intermediate fields B; that is,
k € B C E, and let S be the family of all the subgroups of the Galois group
Gal(E/k); of course, both £ and & are partially ordered sets. Part of the
statement of the Fundamental Theorem of Galois Theory is that the function
g: L — S, given by B — Gal(E/B), is an order-reversing function and that
BV C +— Gal(E/B) NGal(E/C). Example 1.12 shows that g: £ — Sisa
contravariant functor, and we now see that g converts coproducts to products.

We now extend the definitions of coproduct and product of two objects to
(possibly infinite) families of objects.
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Definition. Let C be a category, and let (A;);c; be a family of objects in C
indexed by a set I. A coproduct is an ordered pair (C, (oj: A; — C)icy),
consisting of an object C and a family (¢;: A; — C);e; of morphisms, called
injections, that is a solution to the following universal mapping problem: for
every object X equipped with morphisms (f;: A; — X)ey, there exists a
unique morphism 6 : C — X making the diagram commute for each i.

Should it exist, a coproduct is usually denoted by | |;.; A; (the injections
are not mentioned). A coproduct is unique to isomorphism, for it is an initial
object in a suitable category.

We sketch the existence of the disjoint union of sets (A;);e;. Form the set
U = (Ujes AD) x 1, and define A} = {(a;,i) € U : a; € A;}. The disjoint
union is ((|_|l- Ai, (it A = |; A[)iel), where | |;c; Ai = ;s A} and
a;: aj — (a;,i) € |]; A; (of course, the disjoint union of two sets is a special
case of this construction). The reader may show that this is a coproduct in
Sets; that is, it is a solution to the universal mapping problem.

Proposition 5.9. If (A;)ics is a family of left R-modules, then the direct sum
€D, Ai is their coproduct in gkMod.

Proof. The statement of the proposition is incomplete, for a coproduct re-
quires injections «;. Write C = €, .; A, and define o; : A; — C to be the
function that assigns to each a; € A; the I-tuple whose ith coordinate is q;
and whose other coordinates are zero. Note that each «; is an R-map.

Let X be a module and, for each i € I, let f;: A; — X be an R-map.
If (a;) € C = €p, A;, then only finitely many ¢; are nonzero, and (g;) =
> ;aja;. Define§: C — X by 6: (a;) — )_; fia;. The coproduct diagram
does commute: if a; € A;, then Ow;a; = fia;. We now prove that 8 is unique.
If ¢: C — X makes the coproduct diagram commute, then

V(@) = v (Y aia) =Y veia = fila) = 0((@)).

Therefore, ¥ =60. o

Here is the dual notion.

Definition. Let C be a category, and let (A;);c; be a family of objects in
C indexed by a set I. A product is an ordered pair (C, (p;: C — Aj)ier),
consisting of an object C and a family (p;: C — A;);c; of projections, that
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is a solution to the following universal mapping problem: for every object
X equipped with morphisms f;: X — A;, there exists a unique morphism
6: X — C making the diagram commute for each i.

Should it exist, a product is denoted by [ ];;A;, and it is unique to iso-
morphism, for it is a terminal object in a suitable category.
We let the reader prove that cartesian product is the product in Sets.

Proposition 5.10. If (A;)ies is a family of left R-modules, then the direct
product C = []..; A; is their product in gMod.

iel
Proof. The statement of the proposition is incomplete, for a product requires
projections. For each j € I, define pj: C — A by p;: (a;) = aj € Aj.
Note that each p; is an R-map.

Now let X be a module and, for each i € I, let f;: X — A; be an R-
map. Define #: X — C by 0: x — (f;(x)). First, the diagram commutes:
if x € X, then p;0(x) = f;i(x). Second, 6 is unique. If : X — C makes
the diagram commute, then p;v¥(x) = fi(x) for all i; that is, for each i,
the ith coordinate of ¥r(x) is f;(x), which is also the ith coordinate of 6(x).
Therefore, ¥ (x) = 0(x) forallx € X,andso ¢y = 0. e

We now present another pair of dual constructions.

Definition. Given two morphisms f: B — A and g: C — A in a category
C, a pullback (or fibered product) is a triple (D, «, B) with g = fp that
is a solution to the universal mapping problem: for every (X, «’, /) with
ga’ = fB, there exists a unique morphism 6: X — D making the diagram
commute. The pullback is often denoted by B 4 C.

D—=C

A

Pullbacks, when they exist, are unique to isomorphism, for they are ter-
minal objects in a suitable category. We now prove the existence of pullbacks
in RMOd.

B
—_—
f
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Proposition 5.11.  The pullback of two maps f: B — Aand g: C — A in
rMod exists.

Proof. Define
D={(b,c)e B&C: f(b) =g()},

definew: D — C to be the restriction of the projection (b, ¢) — ¢, and define
B: D — B to be the restriction of the projection (b, ¢) — b. It is easy to see
that (D, «, B) satisfies g = [B.

If (X, o, B') satisfies go’ = fB’, defineamapd: X — Dbyd: x —
(B'(x), &’(x)). The values of 8 do lie in D, for f8'(x) = ga’(x). We let the
reader prove that the diagram commutes and that 0 is unique. Thus, (D, «, B)
is a solution to the universal mapping problem. e

Example 5.12.

(1) That B and C are submodules of a module A can be restated as saying
that there are inclusion mapsi: B — A and j: C — A. The reader will
enjoy proving that the pullback D exists in gRMod and that D = BN C.

(i1) Pullbacks exist in Groups: they are subgroups of a direct product de-
fined as in the proof of Proposition 5.11.

(iii)) We show that kernel is a pullback. More precisely, if f: B — Aisa
homomorphism in gMod, then the pullback of the first diagram below
is (ker f, i), where i : ker f — B is the inclusion.

Let h: X — B be amap with fh = 0; then fhx = 0 for all x € X,
and so hx € ker f. If we define 6: X — ker f to be the map obtained
from h by changing its target, then the diagram commutes: i6 = h. To
prove uniqueness of the map 6, suppose that 8’: X — ker f satisfies
i@’ = h. Since i is the inclusion, 8’x = hx = 0x for all x € X, and so
0’ = 0. Thus, (ker f, i) is a pullback. <«

Here is the dual construction; we have already seen it in Lemma 3.41
when we were discussing injective modules.
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Definition. Given two morphisms f: A — Band g: A — C in a category
C, a pushout (or fibered sum) is a triple (D, o, ) with g = «af thatis a
solution to the universal mapping problem: for every triple (¥, o', 8’) with
B'g = o'g, there exists a unique morphism 6: D — Y making the diagram
commute. The pushout is often denoted by B U4 C.

A
/
B

Pushouts are unique to isomorphism when they exist, for they are initial
objects in a suitable category.

Proposition 5.13. The pushout of two maps f: A — Band g: A — C in
rMod exists.

Proof. It is easy to see that
S={(f(),—g@)eB®C:ac A}
is a submodule of B @ C. Define D = (B & C)/S, define «: B — D by
b+ (b,0)+ S,define B: C — D byc+ (0,c)+ S; it is easy to see that
Bg = af, forifa € A, then afa — fga = (fa,—ga) + S = S. Given
another triple (X, o/, ') with 8’'g = o' f, define
0: D— X by 6:(b,c)+ S+ o)+ B (c).

We let the reader prove commutativity of the diagram and uniqueness of 6. e

Example 5.14.
(i) If B and C are submodules of a left R-module U, there are inclusions
f:BNC — Band g: BNC — C. The reader will enjoy proving that
the pushout D exists in gMod and that D is B + C.

(i) If B and C are subsets of a set U, there are inclusions f: BN C — B
and g: BN C — C. The pushout in Sets is the union B U C.

(iii) If f: A — B is ahomomorphism in gRMod, then coker f is the pushout
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of the first diagram below.

/

%B

BN

=]
O <—

The verification that coker f is a pushout is similar to that in Exam-
ple 5.12(iii).

(iv) Pushouts exist in Groups, and they are quite interesting; for example,
the pushout of two injective homomorphisms is called a free product
with amalgamation. If K| and K, are subcomplexes of a connected
simplicial complex K with K; U K> = K and K| N K, connected, then
van Kampen’s Theorem says that 71 (K) is the free product of 71 (K1)
and 1 (K>) with 71 (K| N K3) amalgamated (see Spanier, Algebraic
Topology, p. 151). <

Here is another dual pair of useful constructions.

Definition. Given two morphisms f, g: B — C, then their coequalizer is

an ordered pair (Z, ¢) with ef = eg that is universal with this property: if

p: C — X satisfies pf = pg, then there exists a unique p’: Z — X with
/

ple=p.

B——=C—>7Z7
g |
XJ”

X.

More generally, if (fi: B — C)jes is a family of morphisms, then the co-
equalizer is an ordered pair (Z, ) with ef; = ef; for all i, j € I that is
universal with this property.

We can prove the existence of coequalizers in Sets using the notion of
orbit space.

Definition. Let ~ be an equivalence relation on a set X. The orbit space
X/ ~ is the set of all equivalence classes:
X/ ~={lx]:x e X},

where [x] is the equivalence class containing x. The function v: X — X/ ~,
defined by v(x) = [x], is called the natural map.
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If f,g: B — C in Sets and ~ is the equivalence relation on C generated
by {(fb, gb) : b € B}, then the coequalizer is the ordered pair (C/ ~, v). In
rMod, the coequalizer is (coker(f — g), v), where v: C — coker(f — g) is
the natural map. Hence, coker f is the coequalizer of f and 0.

Definition. Given two morphisms f, g: B — C, then their equalizer is
an ordered pair (A, ¢) with fe = ge that is universal with this property: if
g: X — B satisfies fg = gq, then there exists a unique ¢': X — B with
eq’ =q.

A—>B—>C

A g
q:/
X.

More generally, if (f;: B — C);¢; is a family of morphisms, then the equal-
izer is an ordered pair (A, e) with fie = fje foralli, j € I that is universal
with this property.

In Sets, the equalizer is (E, e), where E = {b € B : fb = gb} C
B and e: E — C is the inclusion. In gMod, the equalizer of f and g is
(ker(f — g), e), where e: ker(f — g) — B is the inclusion. Hence, ker f is
the equalizer of f and 0.

Example 5.15. If X is a topological space and (U;);c; is a family of open
subsets of X, write U = | J;; Ui and U;; = U; N U; for i, j € I.
(1) If f, g: U — R are continuous functions such that f|U; = g|U; for all
iel, then f =g.

If x € U, then x € U; for some i, and f(x) = (f|U;j)x = (glUj)x =
g(x). Hence, f = g.

(1) If (fi: U;)ier is a family of continuous real-valued functions such that
filUij = f;lU;; for all i, j, then there exists a unique continuous
f:U — Rwith f|U; = f; foralli € I.

If x € U, then x € U; for some i; define f: U — Y by f(x) = fi(x).
The condition on overlaps Uy;, j) shows that f is a well-defined function;
it is obviously the unique function U — Y satisfying f|U; = f; for all
i € I. We prove the continuity of f. If V is an open subset of Y, then
ffoy=unftvy = unn vy =Uwin 7)) =
Ui fl._l(V). Continuity of f; says that fl._l(V) is open in U; for all i,
hence is open in U; thus, f_1 (V) isopenin U, and f is continuous.
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For every open V C X, define I'(V) = {continuous f: V — R} and, if
V € W, where W C X is another open subset, define I'(W) — I'(V) to be
the restriction map f +— f|V. Then properties (i) and (ii) say that I'(U) is
the equalizer of the family of maps I'(U;) — I'(U;;). <«

Exercises
#5.1 (i)
(i)

Prove that @ is an initial object in Sets.

Prove that any one-point set 2 = {xg} is a terminal object
in Sets. In particular, what is the function @ — Q7?

*5.2 Azero object in a category C is an object that is both an initial object
and a terminal object.

@
(ii)

(iii)
@iv)

5.3 (i)
(i)

(iii)

Prove the uniqueness to isomorphism of initial, terminal,
and zero objects, if they exist.

Prove that {0} is a zero object in gkMod and that {1} is a
zero object in Groups.

Prove that neither Sets nor Top has a zero object.

Prove that if A = {a} is a set with one element, then (A, a)
is a zero object in Sets,, the category of pointed sets. If A
is given the discrete topology, prove that (A, a) is a zero
object in Top,,, the category of pointed topological spaces.
Prove that the zero ring is not an initial object in ComRings.
If k is a commutative ring, prove that k is an initial object
in ComAlg, the category of all commutative k-algebras.
In ComRings, prove that Z is an initial object and that the
zero ring {0} is a terminal object.

5.4 For every commutative ring k, prove that the direct product R x S
is the categorical product in ComAlg, (in particular, direct product
is the categorical product in ComAlg; = ComRings).

*5.5 Let k be a commutative ring.

(@

(i)

(iii)

Prove that k[x, y] is a free commutative k-algebra with ba-
sis {x, y}.

Hint. If A is any commutative k-algebra, and if a, b € A,
there exists a unique k-algebra map ¢: k[x, y] — A with
¢(x) =a and p(y) = b.

Use Proposition 5.2 to prove that k[x] ®j k[y] is a free k-
algebra with basis {x, y}.

Use Proposition 5.4 to prove that k[x] ®x k[y] = k[x, y] as
k-algebras.
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*5.6 (i) Let Y be a set, and let P(Y) denote its power set; that is,
‘P(Y) is the partially ordered set of all the subsets of Y. As
in Example 1.3(iii), view P(Y) as a category. If A, B €
P(Y), prove that the coproduct ALUB = A U B and that the
product ATTB = ANB.

(ii) Generalize part (i) as follows. If X is a partially ordered set
viewed as a category, and a, b € X, prove that the coprod-
uct a U b is the least upper bound of a and b, and that the
product a M b is the greatest lower bound.

(iii) Give an example of a category in which there are two ob-
jects whose coproduct does not exist.

Hint. Let Q be a set with at least two elements, and let C be
the category whose objects are its proper subsets, partially
ordered by inclusion. If A is a nonempty subset of €2, then
the coproduct of A and its complement does not exist in C.

*5.7 Define the wedge of pointed spaces (X, xo), (¥, yo) € Top, to be
(X VY, zp), where X VY is the quotient space of the disjoint union
X UY in which the basepoints are identified to zg. Prove that wedge
is the coproduct in Top,,.

5.8 Give an example of a covariant functor that does not preserve co-
products.

*5.9 If A and B are (not necessarily abelian) groups, prove that AN B =
A x B (direct product) in Groups. For readers familiar with group
theory, prove that AL B = A % B (free product) in Groups.

*5.10 (i) Given a pushout diagram in gMod:

f B

D

A—~c
B o
prove that g injective implies « injective and that g surjec-
tive implies « surjective. Thus, parallel arrows have the
same properties.
(ii) Given a pullback diagram in gkMod:

D—=cC
ﬂj( ig
B——A
I
prove that f injective implies « injective and that f sur-
jective implies « surjective. Thus, parallel arrows have the
same properties.
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5.11 ()]
(ii)

512 (@)
(ii)

#5413 (@)
(i)

Assuming that coproducts exist, prove commutativity:
AUBZ=BUA.
Assuming that coproducts exist, prove associativity:
AUBUC)=E (AuB)uC.
Assuming that products exist, prove commutativity:
ANB=BNA.
Assuming that products exist, prove associativity:
AN(BNC)Y=(AnB)ncC.

If @ is a terminal object in a category C, prove, for any
G € obj(C), that the projections A: G M 2 — G and
p: 2 M G — G are isomorphisms.

If A is an initial object in a category C, prove, for any G €
obj(C), that the injections A: G — G U Q and p: G —
Q U G are isomorphisms.

*5.14 Let Cy, C, Dy, D> be objects in a category C.

()

(ii)

If there are morphisms f;: C; — D;, fori = 1,2, and if
C1 N Cy and Dy 1 D, exist, prove that there exists a unique
morphism f] M f> making the following diagram commute
fori =1, 2:

CinCy 4>f1|_|f2 Dy 1 Dy
| Jo
Ci D;,

i

where p; and ¢; are projections.

If there are morphisms g;: X — C;, where X is an object
in C and i = 1,2, prove that there is a unique morphism
(g1, g2) making the following diagram commute:

X

\L(gl,gz
C]ﬁC] Il CZ?CZ,

81 82

where the p; are projections.

Hint. Define an analog of the diagonal Ax: X — X x X
in Sets, given by x — (x, x), and then define (g1, g2) =
(81 M g2)Ax.
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5.15 Let C be a category having finite products and a terminal object 2.
A group object in C is a quadruple (G, u, 1, €), where G is an object
inC, j: G|_|G — G,n: G — G,and e: Q — G are morphisms,
so that the following diagrams commute:

Associativity:
1nw
GneGnG—GGnaG
MHI\L \LM
GNnG—p— G,
Identity:

cno’cnc<"laongc

\W/

G,

where A and p are the isomorphisms in Exercise 5.13.
Inverse:

1,7) 1)
¢ —P6nrc%) ¢

o) | |e

Q G Q,

€

€

where w: G — 2 is the unique morphism to the terminal object.
(i) Prove that a group object in Sets is a group.
(ii) Prove that a group object in Groups is an abelian group.

(iii) Define a morphism between group objects in a category
C, and prove that all the group objects form a subcategory
of C.
(iv) Define the dual notion cogroup object, and prove the dual
of (iii).
*5.16 Prove that every left exact covariant functor 7: gkMod — Ab pre-
serves pullbacks. Conclude that if B and C are submodules of a
module A, then for every module M, we have

Homg (M, BN C) = Homg(M, B) "Homg(M, C).

5.2 Limits

We now discuss inverse limit, a construction generalizing products, pullbacks,
kernels, equalizers, and intersections, and direct limit, which generalizes co-
products, pushouts, cokernels, coequalizers, and unions.
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Definition. Given a partially ordered set I and a category C, an inverse sys-
tem in C is an ordered pair ((Ml-),-el, (l/f,-j)j:i)’ abbreviated {M;, wlj}, where
(M;)ier is an indexed family of objects in C and (1//1.j: M; — M;)j>; is an
indexed family of morphisms for which y; = 1y, for all i, and such that the
following diagram commutes whenever k > j > i.

A partially ordered set /, when viewed as a category, has as its objects
the elements of / and as its morphisms exactly one morphism K;-Z i —
whenever i < j. It is easy to see that inverse systems in C over [ are merely
contravariant functors M: I — C; in our original notation, M (i) = M; and

M (K;-) = 1//121 .
Example 5.16.

(1) If I = {1, 2, 3} is the partially ordered set in which I < 2 and 1 < 3,
then an inverse system over / is a diagram of the form

A

|

B?C.

(ii) If M is a family of submodules of a module A, then it can be partially
ordered under reverse inclusion; that is, M < M’ in case M 2 M’. For
M =< M/, the inclusion map M’ — M is defined, and it is easy to see
that the family of all M € M with inclusion maps is an inverse system.

(iii) If I is equipped with the discrete partial order, that is, i < j if and
only if i = j, then an inverse system over / is just an indexed family of
modules.

(iv) If N is the natural numbers with the usual partial order, then an inverse
system over N is a diagram

M() <—M1 <—M2 D
(we have hidden identities M,, — M,, and composites M, — M,).

(v) If J is an ideal in a commutative ring R, then its nth power is defined

by
J”:{Zal---an a; EJ}.
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Each J" is an ideal, and there is a descending sequence
R2J2J*2J1*>....
If A is an R-module, there is a descending sequence of submodules
ADJADJ?PADJPAD ..
If m > n,definey)': A/JJ"A — A/J"A by
Yria+J"A a4+ J"A
(these maps are well-defined, for m > n implies J"A € J"A). Itis

easy to see that {A/J" A, "} is an inverse system over N.

(vi) Let G be a group and let N be the family of all the normal subgroups
N of G having finite index. Partially order A/ by reverse inclusion:
if N < N’ in N, then N' C N, and define v : G/N' — G/N
by gN’ + gN. It is easy to see that the family of all such quotients
together with the maps ¥ 11\\77 " form an inverse system over V. <

Definition. Let / be a partially ordered set, let C be a category, and let

{M;, 1//;’ } be an inverse system in C over /. The inverse limit (also called
projective limit or limit) is an object l(iLnM,' and a family of projections
(o : 1<iLnM,- — M;);cy such that

@) glfijozj = «; wheneveri < j,

(ii) for every X € obj(C) and all morphisms fi: X — M; satisfying
wi] fj = fiforall i < j, there exists a unique morphism 6: X —
1<iLn M; making the diagram commute.

The notation 1(i£1M,- for an inverse limit is deficient in that it does not
display the morphisms of the corresponding inverse system (and lim M; does
depend on them; see Exercise 5.17 on page 254). However, this is standard
practice.

As with any object defined as a solution to a universal mapping problem,
the inverse limit of an inverse system is unique (to unique isomorphism) if it
exists; it is a terminal object in a suitable category.

Here is a fancy rephrasing of inverse limit, using the notion of constant
Sfunctor.
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Definition. Let C be a category and let A € obj(C). The constant functor
at A is the functor F': C — C with F(C) = A for every C € obj(C) and with
F(f) = 14 for every morphism f inC.

Remark. View the partially ordered index set / as a category, so that an
inverse system {M;, <pl.j } is a contravariant functor M : I — C, where M (i) =
M; foralli € I. If L = LiElMi, then its projections «;: L — M; give
commutative diagrams

o

4>Mi

L
ILT Ttp;j
L

— M;.
aj
More concisely, the projections constitute a natural transformation «: |L| —
M, where |L|: I — C is the constant functor at L. Thus, the inverse limit is
the ordered pair (L, «) € C x (CP)!. <«

Proposition 5.17. The inverse limit of any inverse system {M;, wij } of left
R-modules over a partially ordered index set I exists.

Proof. Define a thread to be an element (m;) € [[M; such that m; =

1//1? (mj) whenever i < j, and define L to be the set of all threads. It is
easy to check that L is a submodule of [ [; M;. If p; is the projection of the
direct product to M;, define «o; : L — M; to be the restriction p;|L. It is clear
that 1//l.jaj = «; wheni < j.

Let X be a module, and let there be given R-maps f;: X — M, satisfying
v f; = fiforalli < j. Define 0: X — [[M; by

0(x) = (fi(x)).

Thatim 6 C L follows from the given equation llfi] fj = fiforalli < j. Also,
6 makes the inverse limit diagram commute: o;60: x — (fi(x)) — fi(x).
Finally, 0 is the unique map X — L making the diagram commute for all
i < j.Ifo: X - L,then p(x) = (m;) and o;p(x) = m;. Thus, if ¢ satisfies
ajp(x) = fi(x) for all i and all x, then m; = f;(x), and so ¢ = 6. We
conclude that L = 1<an M;. o

Inverse limits in categories other than module categories may exist; for
example, inverse limits of commutative rings always exist, as do inverse limits
of groups or of topological spaces.

Example 5.18. The reader should supply verifications of the following as-
sertions in which we describe the inverse limit of inverse systems in Exam-
ple 5.16.
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If I is the partially ordered set {1, 2, 3} with 1 > 3 and 2 > 3, then an
inverse system is a diagram

oo

I

B——C C

I

and the inverse limit is the pullback. In pMod, if A = {0}, then ker f is
a pullback (and is an equalizer), and so K = ker f may be regarded as
an inverse limit. In more detail, the kernel of f is an ordered pair (K, i),
where i: K — B satisfies fi = 0 and, given any map #: X — B with
fh = 0, there exists a unique 6: X — K with if = h.

We have seen that the intersection of two submodules of a module is
a special case of pullback. If M is a family of submodules M of a
module, then M and inclusion maps form an inverse system if M is
partially ordered by reverse inclusion [see Example 5.16(ii)].

Let us first consider the special case when M is closed under finite
intersections; that is, if M, N € M, then M N N € M. For example,
a nested family M (if M, N € M, then either M C N or N C M) is
closed under finite intersections.

Let us show that (), M is the inverse limit of {M, 1//11\‘,4 } (where
w,{‘f: M — N is the inclusion when M < N; that is, when N C M).
For each M € M, define py: (\pyepq M — M to be the inclusion
map. If x € X and M € M, then fy;(x) € M. We claim that f;(x) =
fn(x) forall M,N € M. If D € Mand D C M, then fp = V1) fu
and fp(x) = fu(x). Since M is closed under finite intersections,
M,N € Mimplies D = MNN € M, and so fy(x) = funn(x) =
fn(x). Define 0: X — ﬂMeM M by 6(x) = fu(x). We have just
shown that 0(x) is independent of the choice of M; moreover, 6(x) =
fm(x) € Mforall M € M, and so 6(x) € (e M.

In general, define M = {M;; N---NM;, : M;; € M,n > 1}; then M’
is closed under finite intersections and (\y;cpg M = (\yyepm M.
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(iii) If I is a discrete index set, then the inverse system {M; : i € [} in
rMod has the direct product [[; M; as its inverse limit. Indeed, this is
precisely the categorical definition of a product. <«

Example 5.19.

(1) If J is an ideal in a commutative ring R and M is an R-module, then the
inverse limit of {M/J"M, "} [in Example 5.16(v)] is usually called
the J-adic completion of M; let us denote it by M.

Recall that a sequence (x,;) in a metric space X with metric d converges
to a limit y € X if, for every ¢ > 0, there is an integer N so that
d(xp,y) < € whenever n > N; we denote (x,) converging to y by

Xp — .

A difficulty with this definition is that we cannot tell if a sequence is
convergent without knowing what its limit is. A sequence (x;) is a
Cauchy sequence if, for every € > 0, there is N so that d(x,,, x,) < €
whenever m, n > N. The virtue of this condition on a sequence is that
it involves only the terms of the sequence and not its limit. If X = R,
then a sequence is convergent if and only if it is a Cauchy sequence. In
general metric spaces, however, we can prove that convergent sequences
are Cauchy sequences, but the converse may be false. For example, if
X is the set of all strictly positive real numbers with the usual metric
|x — y|, then (1/n) is a Cauchy sequence in X that does not converge
(because its limit O does not lie in X). A metric space X is complete if
every Cauchy sequence in X converges to a limit in X.

Definition. A completion of a metric space (X, d) is an ordered pair
(X, 9: X — X) such that

(a) (5(\ , Zi\) is a complete metric space,
(b) ¢ is an isometry; that is, Zl\(go(x), o(y)) =d(x,y) forallx, y € X,

(c) @(X) is a dense subspace of 5(\; that is, for every X € 5(\, there is a
sequence (x,,) in X with ¢(x,) — X.

It can be proved that completions exist (Kaplansky, Set Theory and Met-
ric Spaces, p. 92) and that any two completions of a metric space X are
isometric: if ()A( , ) and (Y, ¥) are completions of X, then there exists
a unique bijective isometry 6 : X — Y with Y = O¢. Indeed, a com-
pletion of X is just a solution to the obvious universal mapping prob-
lem (density of im ¢ gives the required uniqueness of ). One way to
prove existence of a completion is to define its elements as equivalence
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classes of Cauchy sequences (x,) in X, where we define (x,) = (y,) if
d(x,, yp) — 0.

Let us return to the inverse system {M/J" M, v'}. A thread
(a1 +JM,ay+J*M, a3+ J°M, ...) € lim(M/J" M)

satisfies the condition ¥ (a,, + J" M) = a,, + J"M for all m > n, so
that
am —a, € J"M  whenever m > n.

This suggests the following metric on M in the (most important) special
case when ﬂ;’lozl J'"M = {0}. If x € M and x # 0, then there is i with
x € JIM and x ¢ J'T'M; define |x|| = 27/; define |0 = 0. It
is a routine calculation to see that d(x, y) = |[x — y|| is a metric on
M (without the intersection condition, ||x| would not be defined for
a nonzero x € ﬂg’;l J"M). Moreover, if a sequence (a,) in M is a
Cauchy sequence, then it is easy to construct an element (b,, + JM) €
lim M/J"M that is a limit of (¢(ay)). In particular, when M = Z and
J = (p), where p is a prime, then the completion Z, is called the ring
of p-adic integers. It turns out that Z, is a domain, and Q, = Frac(Z))
is called the field of p-adic numbers.

(i) We have seen, in Example 5.16(vi), that the family A/ of all normal
subgroups of finite index in a group G forms an inverse system; the
inverse limit 1(21 G /N, denoted by G, is called the profinite completion

of G. Thereis amap G — G, namely, g — (gN), and it is an injection
if and only if G is residually finite; that is, (yc A N = {1}. Itis known,
for example, that every free group is residually finite.

There are some lovely results obtained making use of profinite comple-
tions. If r is a positive integer, a group G is said to have rank r if every
subgroup of G can be generated by r or fewer elements. If G is a p-
group (every element in G has order a power of p) of rank r that is resid-
ually finite, then G is isomorphic to a subgroup of GL(n, Z ) for some
n (not every residually finite group admits such a linear imbedding).
See Dixon—du Sautoy—Mann-Segal, Analytic Pro-p Groups, p. 98. <

Example 5.20 (Griffith). Injective envelope is not an additive functor;
that is, there is no additive functor 7: Ab — Ab with T(G) = Env(G) for
all G € obj(Ab). If such a functor exists, then Exercise 2.21 on page 68
says that the function 7: End(G) — End(Env(G)), given by f +— T f,isa
nonzero ring homomorphism. Now if G = I, then Env(I,) = Z(p*°) (the
Priifer group), End(Il,) = F, and End(Z(p*°)) = Z, (by Exercise 5.20 on
page 254). But the additive group of ), is finite, while the additive group of
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7, is torsion-free (by Exercise 5.20). Hence, there can be no nonzero additive
map End(ll,) — End(Env(I,)), and so Env is not an additive functor. <

We now prove that covariant Hom functors preserve inverse limits; The-
orem 2.30 is the special case involving a discrete index set. We will give
another proof of this after we introduce adjoint functors.

Proposition 5.21. If {M;, wij } is an inverse system of left R-modules, then
there is a natural isomorphism

Hompg (A, 1<ir_an~) = l(ir_nHomR(A, M;)
for every left R-module A.

Proof.  This statement follows from inverse limit solving a universal map-
ping problem. In more detail, Homg (A, [J) carries the inverse system {M;, W,-J }

into the inverse system {Homg (A, M;), wij*}. Consider the diagram

limHomp(A, Mj) < - — - - % _ Hompg(A, lim M;)

Homg (A, M;)
Bj )

u!

Homg (A, Mj).

s

We may assume that 1<ir_nHom Rr(A, M;) is constructed as in Proposition 5.17,
so that its elements are threads (g;) € [ [, Homg(A, M;) and B;: (gi) +— g&i.
The maps «; : 1(&1 M; — M; are the projections (m;) +— m;, and «;, are the
induced maps.

Define 6: HomR(A,l(iilMi) — l(iilHomR(A, M;) by f — (a;f); it
is easy to check that 8(f) is a thread and that 6 is a homomorphism. The
diagram commutes, for if f € Homg (A, 1(iI_1’1M,'), then

Bib(f) = Bi((i ) = i f = au(f).

To see that 6 is injective, let 6(f) = 0, where f € Hompg(A, 1<ir_nM,-).
Then 0 = 0(f) = («; f),sothato; f = Oforalli. If a € A, then f(a) =
(m;), say. Hence, «; f(a) = m; =0and f = 0.

To see that 6 is surjective, take g = (g;) € l(iLnHomR (A, M;). Since (g;)
is a thread, the right-hand triangle in the following diagram commutes.
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But this says that g = (g;) = (a;¢") = 0(g’); that is, @ is surjective.
Naturality means that if ¢: A — B, then the following diagram com-
mutes.
Homp (B, lim M;) _9. lim Homg (B, M;)

o] bor

Homg (A, lim M;) _0. lim Homg (A, M;)

The straightforward proof is left to the reader. e

Remark. Once we define a morphism of inverse systems, then it will be
clear that the isomorphism in Proposition 5.21 is also natural in the second
variable. <«

‘We now consider the dual construction.

Definition. Given a partially ordered set / and a category C, a direct sys-
tem in C is an ordered pair ((M,-),-el, (w;)iﬁj), abbreviated {M;, <p§.}, where
(M;);er is an indexed family of objects in C and ((p;: M; — M;);<; is an
indexed family of morphisms for which ¢; = 1y, for all i, and such that the
following diagram commutes wheneveri < j < k.

%

J Mj Pr

M;

M

A partially ordered set I, when viewed as a category, has as its objects
the elements of I and as its morphisms exactly one morphism Kj- wheni < j.
It is easy to see that direct systems in C over / are merely covariant functors
M : I — C; in our original notation, M (i) = M; and M(Kj-) = goj

Example 5.22.

(1) If I = {1, 2, 3} is the partially ordered set in which 1 < 2 and 1 < 3,
then a direct system over [ is a diagram of the form

A—L-p
¢
C.

(i1) If Z is a family of submodules of a module A, then it can be partially
ordered under inclusion; thatis, M < M’ incase M € M’. For M <
M, the inclusion map M — M’ is defined, and it is easy to see that the
family of all M € 7 with inclusion maps is a direct system.
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(iii) If I is equipped with the discrete partial order, then a direct system over
I is just a family of modules indexed by /. <«

Definition. Let / be a partially ordered set, let C be a category, and let
{M;, goj.} be a direct system in C over /. The direct limit (also called inductive
limit or colimit) is an object h_r)an- and insertion morphisms («; : M; —
1i_n)1 M;)ic1 such that

(1) aj(p; = o; wheneveri < j,
(i) Let X € obj(C), and let there be given morphisms f;: M; — X sat-

isfying f jgp; = f; for all i < j. There exists a unique morphism
0: li_I)nMi — X making the diagram commute.

The notation lim M; for a direct limit is deficient in that it does not display
the morphisms of the corresponding direct system (and lim M; does depend
on them; see Exercise 5.17 on page 254). However, this is standard practice.

As with any object defined as a solution to a universal mapping problem,
the direct limit of a direct system is unique (to unique isomorphism) if it
exists; it is an initial object in a suitable category.

Here is a fancy rephrasing of direct limit similar to the remark on page 232.
View the partially ordered index set I as a category, so that a direct system
{M;, goj.} is a (covariant) functor M : I — C, where M (i) = M, foralli € I.
If L = h_r)n M;, then its insertion morphisms «; : M; — L give commutative
diagrams:

o

e
~— M;
a@j

L
1|
L

~

More concisely, the insertion morphisms constitute a natural transformation
o: M — |L|, where |L|: I — C is the constant functor at L (constant func-
tors are both covariant and contravariant). Thus, the direct limit is the ordered
pair (L, a) € C X cl.
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Proposition 5.23. The direct limit of any direct system {M;, goj.} of left R-
modules over a partially ordered index set I exists.

Proof. For each i € I, let A; be the morphism of M; into the direct sum
D, M;. Define
D= (@ Mi> /S,
i

where S is the submodule of € M; generated by all elements A j<p§.m i — Aim;
with m; € M; and i < j. Now define insertion morphisms «; : M; — D by

o mip = Aij(m;) + S.

It is routine to check that D solves the universal mapping problem, and so
D= 111} M;. o

Thus, each element of lim M; has a representative of the form Y A;m;+S.

The argument in Proposition 5.23 can be modified to prove that direct lim-
its in other categories exist; for example, direct limits of commutative rings,
of groups, or of topological spaces always exist.

Example 5.24. The reader should supply verifications of the following as-
sertions, in which we describe the direct limit of some direct systems in Ex-
ample 5.22.

(1) If 1 is the partially ordered set {1, 2, 3} with 1 < 2 and 1 < 3, then the
diagram
A *f> B
g
C

is a direct system and its direct limit is the pushout. In particular, if
g = 0, then coker f is a pushout, and so cokernel may be regarded as a
direct limit.

(i1) If I is a discrete index set, then the direct system is just the indexed fam-
ily {M; : i € I}, and the direct limit is the direct sum: lim M; = P, M;,
for the submodule S in the construction of h_r)n M; is {Ef Alternatively,
this is just the categorical definition of a coproduct. <«

Definition. A covariant functor F': A — C preserves direct limits if, when-
ever (1i_r>n Ai, (o A — h_r)n A;)) is a direct limit of a direct system {A;, (p;}
in A, then (F(li_r)n Ap), (Fa;: FA; — F(li_r)n A;))) is a direct limit of the
direct system {F A;, F(p?} in C.
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Dually, a covariant functor F: A — C preserves inverse limits if, when-
ever (1<iLn A;, (a;: 1<iLnA,~ — A;)) is an inverse limit of an inverse system

{A;, wij} in A, then (F(l(iLnA,-), (Fa;: F(l(ir_nA,-) — FA;)) is an inverse

limit of the inverse system {FA;, F wij }in C.

A contravariant functor F: A — C converts direct limits to inverse lim-
its if, whenever {A;, (p?} is a direct system and lim A; has insertion mor-
phisms ¢;: A; — lim A;, then F(lim A;) = lim FA; and its projections are
Fa;: F (1(i£1 A;) — FA;. There is a similar deﬁition of a contravariant func-
tor converting inverse limits to direct limits.

Let us illustrate these definitions.

Proposition 5.25. Let F: RMod — Ab be a covariant functor. Then F
preserves kernels if and only if F is left exact, and F preserves cokernels if
and only if F is right exact.

Proof Let0 — A’ —> A L, A" be exact. If F preserves kernels, then
(FA’, Fi) is a kernel of Fp, and Example 5.12(iii) shows that F'i is an injec-
tion; that is, F' is left exact. Conversely, if F is left exact, then (ker Fp, Fi)
is a kernel of Fp, and so F preserves kernels. The proof that right exactness
and preserving cokernels are equivalent is dual. e

The reader may wonder why we have mentioned kernel and cokernel but
not image. If f: A — B in gMod, then coker f = B/im f, and so

im f = ker(B — coker f).

When the index set is discrete, it makes sense to say that a functor pre-
serves direct products or converts direct sums. In Proposition 5.21, we proved
that covariant Hom functors preserve inverse limits. We now generalize The-
orem 2.31, which says that Homg (B, A;, B) = [[; Homg(A;, B), by show-
ing that Hompg (L], B) converts direct limits to inverse limits.

Proposition 5.26. [f{M;, (pj.} is a direct system of left R-modules, then there
is an isomorphism

0: HomR(li_r>an-, B) — l(iLnHomR(M,-, B)

for every left R-module B.

Proof.  Since Homg (O, B) is a contravariant functor, {Homg(M;, B), (p"‘*}
is an inverse system. The isomorphism 6 is defined by f — (f«;), where «;
are the insertion morphisms of the direct limit 11_1’1)1 M;; the proof, modeled on
that of Proposition 5.21, is left to the reader. e
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Remark. Once we define a morphism of direct systems, then it will be clear
that the isomorphism in Proposition 5.26 is natural. <«

We now prove that A ® g [ preserves direct limits. This also follows from
Theorem 5.43, a result about adjoint functors, but the proof here is based on
the construction of direct limits.

Theorem 5.27. If A is a right R-module, then A Qg Ul preserves direct
limits. Thus, if {B;, (p;.} is a direct system of left R-modules over a partially
ordered index set 1, then there is a natural isomorphism

A ®g lim B; = 1lim(A ®r B;).

Proof. Note that Exercise 5.18 on page 254 shows that {A ®g B;, 1 ® (pz.} is
a direct system, so that lim(A ®g B;) makes sense.

We begin by constructing h_r)n B; as the cokernel of a certain map between
direct sums. For each pair i, j € I withi < j in the partially ordered index
set I, define B;; = B; x {j}, and denote its elements (b;, j) by b;j. View
B;; as a module isomorphic to B; via the map b; — b;;, where b; € B;, and
define o: €P;; Bij — €P; Bi by

o bjj > )ngo;b,- — Aibi,

where A; is the injection of B; into the direct sum. Note that imo = §, the
submodule arising in the construction of 111)1 B; in Proposition 5.23. Thus,

cokero = (P B;)/S = h_r)n B;, and there is an exact sequence3

P> Ps— lim B; — 0.
Right exactness of A ® g [ gives exactness of
A QR (@Bij) 1eg A ®r (@Bi) — AQ®g (lim B;) — 0.
By Theorem 2.65, the map 7: A ®g (P; Bi) = @, (A ®r B;), given by
7:a® b)) — (a®b;),

is a natural isomorphism, and so there is a commutative diagram

A®@Bij£>A®@Bi*>A®li_r)nBi*>0

g e !

B(A® Byj) —> DA ® B) —=lim(A ® B) —0,

3The astute reader will recognize 111)1 B; as a coequalizer.
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where 7’ is another instance of the isomorphism of Theorem 2.65, and
G:a®bij > (1®1)(a®¢ib) — (1@ 1)@ ®b).

By the Five Lemma, there is an isomorphism A ®pg li_rr)13i — cokero =

li_n;(A ®g Bi), the direct limit of the direct system {A ®r B;, 1 ® go;}.
The proof of naturality is left to the reader. e

The reader may have observed that the hypothesis of Theorem 5.27 is too
strong. We really proved that any right exact functor that preserves direct sums
must preserve all direct limits (for these are the only properties of A Qg [
that we used). But this generalization is only virtual, for we will soon prove,
in Theorem 5.45, that such functors must be tensor products. The dual of
Theorem 2.65 also holds, and it has a similar proof; every left exact functor
that preserves products must preserve all inverse limits (see Exercise 5.28 on
page 256).

There is a special kind of partially ordered index set that is useful for
direct limits.

Definition. A directed set is a partially ordered set / such that, for every
i,jel, thereisk € I withi <kand j <k.

Example 5.28. If [ is the partially ordered set {1, 2,3} with 1 < 2 and
1 < 3, then I is not a directed set. <«

Example 5.29.

(1) If Z is a simply ordered family of submodules of a module A (that is, if
M, M' € T, then either M C M’ or M’ C M), then Z is a directed set.

(i1) If Z is a family of submodules of a left R-module M, then it can be
partially ordered by inclusion; that is, § < S’ if and only if S C §'. If
S < 8, then the inclusion map S — S’ is defined. If S, S" € Z, then
S+ 8" € 7, and so the family of all S € 7 is a directed set.

(i) If (M;);e; 1s some family of modules, and if / is a discrete partially
ordered index set, then [ is not directed. However, if we consider the
family F of all finite partial sums

My & - &M,
then F is a directed set under inclusion.

(iv) If A is a left R-module, then the family Fin(A) of all the finitely gen-
erated submodules of A is partially ordered by inclusion, as in part (ii),
and is a directed set.
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(v) If R is a domain and Q = Frac(R), then the family of all cyclic R-
submodules Q of the form (1/r), where r € R and r # 0, is a partially
ordered set, as in part (ii); here, it is a directed set under inclusion, for
given (1/r) and (1/s), then each is contained in (1/rs).

(vi) Let X be a topological space. If x € X, let ®(x) be the family of all
those open sets containing x. Partially order @ (x) by reverse inclusion:

U<V if VCU.

Notice that ®(x) is directed: given U, V € ®(x), then U NV € Uy and
U<UNVandV <xUNYV.

(vii) Abstract simplicial complexes have geometric realizations that are topo-
logical spaces. Finite simplicial complexes are homeomorphic to cer-
tain subspaces of Euclidean space, while an infinite simplicial complex
X is, by definition, a CW-complex; that is, it is a Hausdorff space that
is closure finite with the weak topology. Direct limits exist in Top,, the
category of all Hausdorff spaces (they are quotients of coproducts), and
X ~ lim_ K, where IC is the family of all finite simplicial complexes

. —K
nX. «

There are two reasons to consider direct systems with directed index sets.
The first is that a simpler description of the elements in the direct limit can be
given; the second is that h_r)n preserves short exact sequences.

Lemma 5.30. Let {M;, <pj-} be a direct system of left R-modules over a di-

rected index set I, and let \;: M; - D M; be the ith injection, so that
lim M; = (D M;)/S, where S = (x‘,<p;m,- —Aimj :mj € Mj and i < j).

(1) Each element of li_r)nM,' has a representative of the form A;jm; + S
(instead of ) _; Aim; + S).
(i) A;m; + S = 0 if and only if(pf (m;) = 0 for some t > i.
Proof.

(1) Asin the proof Proposition 5.23, the existence of direct limits, lim M; =
(6p M;)/S, and so a typical element x € @QMI‘ has the form x =
> xim; + S. Since I is directed, there is an index j vx_/ith J=i for all
i occurring in the sum for x. For each such i, define b' = (p;.m[ € Mj,

so that the element b, defined by b = Zi bt liesin M j- It follows that
> himi — b= "(him; — A;b')
= Z()\im,- — Ajgoj-mi) S\
Therefore, x = ) A;m; + S = A;b + S, as desired.
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(i) If ¢!m; = O for some ¢ > i, then

Aimi+ S = Aim; + (k,(pimi —Aimi)+85=2S.

Conversely, if A;m; + S = 0, then A;m; € S, and there is an expression
Aimp = Zaj()»kgolgmj — Ajmj) es,
J

where a; € R. We are going to normalize this expression; first, we
introduce the following notation for relators: if j < k, define

r(j,k,mj) = kkwlfmj —Ajmj.

Since a;r(j, k,m;) = r(j, k,ajm;), we may assume that the notation
has been adjusted so that

Aim; = Z r(j, k,mj).
i

As [ is directed, we may choose an index ¢ € [ larger than any of the
indices i, j, k occurring in the last equation. Now

)»t%imi = ()»zwimi — Aim;) + Ajm;
=r(i, t,m;) 4+ Ajm;
=r(i,t,m;)+ Z r(j, k,mj).

J
Next,

r(j, k,mj) = hxgimj — rjm;
= (gl mj — hjm;) + [ (—glm ;) — hi(—gim))]
= r(ja tamj) +r(ks z, _wlgmj)v

because go{‘(p,i = go,i , by the definition of direct system. Hence,

)\'l(p;ml = Z r(€7 tv-xe)a
L

where x; € M,. But it is easily checked, for £ < ¢, that

r, t,mg) +r, t,my) =r(, t,mg+mp).
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Therefore, we may amalgamate all relators with the same smaller index
£ and write

hagimi =" (€1, x0)
l

= Z i xXe — hexe

¢
= A (Z @f%) - Z)»exe,
¢ ¢

where xy € M, and all the indices ¢ are distinct. The unique expression
of an element in a direct sum allows us to conclude, if £ # ¢, that
Aexe = 0; it follows that x;, = 0, for Ay is an injection. The right
side simplifies to A;@;m; — A,m; = 0, because ¢] is the identity. Thus,
the right side is 0 and Atgofmi = 0. Since A; is an injection, we have
(pfmi =0, as desired. e

When the index set is directed, there is a simpler description of direct
limits in terms of orbit spaces.

Corollary 5.31.

(1) Let {M;, (p;} be a direct system of left R-modules over a directed index
set I, and let |_|; M; be their disjoint union. For m; € M;, mj € Mj,
define m; ~ mj if they have a common successor; that is, there ex-
ists an index k with k > i, j such that w,imi = (p,{mj. Then ~ is an
equivalence relation on |_|; M;.

(i) The orbit space L = (|_]i M;)/ ~ is a left R-module.
(i) L = 11_11)1 M;; hence, elements of ll_n)l M; are equivalence classes [m;],
where m; € M;, and [m;] + [m’j] = [(p,im,- + (p,fm’j], where k > i, j.
Proof.

(1) Reflexivity and symmetry are obvious. For transitivity, assume that
(p;mi = go{,mj for some p > i, j and goémj = go’;mk for some g > j, k.
Since [ is directed, there is an index r > p, g. Using the commutativity
relation between the maps of the direct system, we have ¢/ m; = ¢*my.

(i) Denote the equivalence class of m; by [m;]. It is routine to check that
the operations

rlm;] = [rm;] if r € R,
[mil + [m';] = [@im; + glm',]. where k = i, j,

are well-defined and that they give L the structure of a left R-module.
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(iii) As in the proof of Proposition 5.23, let 1'11)1M,~ = (EB; Mi) /S, where

S is generated by {kj(pj.mi — Aim; : m; € Mjandi < j}. Define
f: L — limM; by f:[m;] — m; + §. It is routine to check that f
isa well—dﬁned R-map. Since [ is directed, Lemma 5.30(i) shows that
f is surjective. If 0 = f([m;]) = m; + S, then Lemma 5.30(ii) says
that gofmi = 0 for some ¢ > i; that is, [m;] = [0]. Therefore, f is an
isomorphism. e

Example 5.32. We now compute the direct limits of some of the direct
systems in Example 5.29.

(i) Let Z be a simply ordered family of submodules of a module A; that is,

if M, M’ € T, then either M € M’ or M’ € M. Then 7 is a directed
set, andli_r)nM,- =U; M;.

(1) If (M;);eg is some family of modules, then F, all finite partial sums, is

a directed set under inclusion, and 11_n>1 M; =, M;.

(iii) If A is a module, then the family Fin(A) of all the finitely generated

submodules of A is a directed set and h_r)n M; = A.

@iv) If R is a domain and Q = Frac(R), then the family of all cyclic R-

submodules M, € Q of the form (1/r), where r € R and r # 0, forms
a directed set under inclusion, and h_r)n M, = Q; that is, Q is a direct
limit of modules M, = R.

(v) In Example 1.14, we considered the presheaf P over a topological space

X, defined on an open U € X by P(U) = {continuous f:U — R}.
For a point p € X, let U be the family of all open neighborhoods U
of p partially ordered by reverse inclusion. As in Example 5.29(vi), U
is a directed set. If f, g are continuous functions U, U’ — R, where
U,U’ € U, define f ~ g in case there is some neighborhood W of p
with W C U N U’ such that f|W = g|W. Now ~ is an equivalence re-
lation (transitivity uses the hypothesis that I/ is directed), and the equiv-
alence class [ f, p] of f is called the germ of f at p. By Corollary 5.31,
a germ [ f, p] is just an element of lim P(W), and we may view [ f, p]
as a typical element of this direct limit. <«

Recall that a direct system {A;, aj. } in a category C over a partially ordered

index set / can be construed as a covariant functor A: I — C, where A(i) =
A; and A(K}) = a}.

Definition. Let A = {A;, aj.} and B = {B;, ,3;} be direct systems over the
same (not necessarily directed) index set . A morphism of direct systems is
a natural transformation r: A — B.
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In more detail, r is an indexed family of homomorphisms
r= (it Ai > Biiel
making the following diagrams commute for all i < j:

Al-L>Bl~

i
A morphism of direct systems r: (A;, oz;'.)} — {B;, ﬂj.} determines a ho-
momorphism
7 limA; — lim By
— —

by

—

T Zkiai + S+ Z,u,iriai + T,

where S € P A; and T C € B are the relation submodules in the construc-
tion of lim A; and h_r)n B;, respectively, and A; and p; are the injections of A;
and Bj;, respectively, into the direct sums. The reader should check that r be-

ing a morphism of direct systems implies that 7 is independent of the choice

of coset representative, and hence 7 is a well-defined function. One can, in
a similar way, define a morphism of inverse systems, and such a morphism
induces a homomorphism between the inverse limits. With these definitions,
the reader may state and prove the naturality assertions for Theorems 5.21,
5.26, and 5.27.

Proposition 5.33. Let I be a directed set, and let {A;, ozj.}, {B;, ,Bj. }, and
{Ci, y;} be direct systems of left R-modules over I. Ifr: {A;, aj.} — {B;, ,Bj.}
and s: {B;, ,3;} — {C;, V;} are morphisms of direct systems, and if

0—>Ai£>Bii>C,’—>O

is exact for each i € I, then there is an exact sequence

0 — limA; = lim B; > limC; — 0.
— — —

— . . . .
Proof. 'We prove only that r is an injection, for the proof of exactness of
the rest is routine; moreover, the hypothesis that I be directed enters the proof

only in showing that 7 isan injection.
Suppose that 7(x) = 0, where x € li_r)nAi. Since the index set 7 is
directed, Lemma 5.30(i) allows us to write x = A;a; + S (Where S € P A; is
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the relation submodule and A; is the injection of A; into the direct sum). By
definition, 7(x+S) = piriai+T (where T C €P B; is the relation submodule
and p; is the injection of B; into the direct sum). Now Lemma 5.30(ii) shows
that u;jria; + T = 0 in h_rr)lBi implies that there is an index k > i with

,BIiria,- = 0. Since r is a morphism of direct systems, we have
0= piria; = rraia;.
Finally, since r; is an injection, we have oz,iai = 0 and, hence, that x =

Mia; + S = 0. Therefore, 7 is an injection. e

The next result generalizes Proposition 3.48.

Proposition 5.34. If{F;, (p?} is a direct system of flat right R-modules over
a directed index set 1, then h_I)n F; is also flat.

Proof. Let0 — A LN B be an exact sequence of left R-modules. Since
each F; is flat, the sequence

1; @k
0> For A5 F @B

is exact for every i, where 1; abbreviates 1r,. Consider the commutative
diagram
0 — lim(F; ® A) — £~ lim(F; ® B)
wi W

0— (im F) ® A —Z% (lim F) ® B,

where the vertical maps ¢ and ¢ are the isomorphisms of Theorem 5.27, the
map k is induced from the morphism of direct systems {1; ® k}, and 1 is the
identity map on lim F;. Since each F; is flat, the maps 1; ® k are injections;
since the index set I is directed, the top row is exact, by Proposition 5.33.
Therefore, 1 @ k: (li_r)n FHl® A — (li_r)n F;) ® B is an injection, for it is the

composite of injections w%w_l. Therefore, 11_1’I>1 F;isflat. e
Corollary 5.35.

(1) If R is a domain with Q = Frac(R), then Q is a flat R-module.

(1) Ifevery finitely generated submodule of a right R-module M is flat, then
M is flat.
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Proof.

(1) In Example 5.29(v), we saw that Q is a direct limit, over a directed index
set, of cyclic submodules, each of which is isomorphic to R. Since R is
projective, hence flat, the result follows from Proposition 5.34.

(i) In Example 5.29(iii), we saw that M is a direct limit, over a directed
index set, of its finitely generated submodules. Since every finitely gen-
erated submodule is flat, by hypothesis, the result follows from Proposi-
iton 5.34. We have given another proof of Proposition 3.48. e

Example 5.36. The generalization of Corollary 5.35(ii): a right R-module
M is flat if every finitely presented submodule of M is flat, may not be true.
Let k be a field, let R = k[X], where X is an infinite set of indeterminates,
and let m be the ideal generated by X. Now m is a maximal ideal because
R/m = k. Hence, the module M = R/m is a simple module; that is, it has
no submodules other than {0} and M. As in Example 3.14, M is not finitely
presented, and so the only finitely presented submodule of M is {0}. Thus,
every finitely presented submodule of M is flat. However, we claim that M is
not flat. By Proposition 3.49, every flat module over a domain is torsion-free.
But R = k[X] is a domain and M = R/m is not torsion-free, for if x € X,
then x(1 +m) = 0. Therefore, M is not flat. <«

We are going to prove the surprising result that every flat module is a
direct limit of free modules. We often think of direct limits as generalized
unions, but this can be misleading. After all, I = I, & I3, so that I; is a
projective Ig-module and, hence, it is flat; but I, is surely not a union of free
modules, each of which has at least six elements. Our exposition follows that
in Osborne, Basic Homological Algebra.

We begin with a technical definition.

Definition. Let D be a submodule of a module C, let A be a set of submod-
ules of C partially ordered by inclusion, and let 3 be a set of submodules of
D partially ordered by inclusion. Then (C, D, A, B) is a (C, D)-system if

(i) A and B are directed sets,
(i) C =Uygea A, and D = Jpp B,
(iii) A dominates B; that is, for each B € B, there exists A € A with A D B.
Every (C, D)-system determines a directed set. Define
I=I1I(C,D,A,B)={(A,B)e AxB:ADB}.
Partially order I by
(A,B)<(A',B") ifAC A"and BC B'.
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Proposition 5.37. Let (C, D, A, B) be a (C, D)-system. Then the set I =
I1(C, D, A, B) is a directed set and

lim , g (A/B) =C/D.
Proof.  To see that I is directed, let (A, B), (A’, B') € I. Since B is directed,
there is B” € B with B, B € B”. But .A dominates B, so there is A” € A
with B” C A”. Finally, since A is directed, there is A* € Awith A, A’, A” C
A*. Then (A, B), (A", B') < (A*, B).

The indexed family (A/B), B)es is a direct system if we define
¢((2/”l;)/): A/B — A’/B’, whenever (A, B) < (A’, B'), as the composite
A/B — A'/B — A’/B’, where the first arrow is inclusion and the second is
enlargement of coset.

Consider the diagram in which (A, B) < (A’, B'):

C/D—- - ___ - X
A/B
oyl pl ‘Pﬁ/lz/ \L fA’,B/
A'/B,

where aq p: A/B — C/D is the composite A/B — C/B — C/D (inclu-
sion followed by enlargement of coset); thatis, «s p: a + B — a + D.

Uniqueness of amap 6: C/D — X iseasy. Letc + D € C/D. By (ii),
there is A € A withc € A; if B € B, there is A’ € A with A’ O B, by
(iii); finally, there is A” € A with A” 2 A, A’, by (i). Thus, (A”, B) € I and
c € A”. Commutativity of the completed diagram would give

0(c+ D) =0asr p(c+ D) = far p(c + D).

It is straightforward to prove that this formula gives a well-defined homo-
morphism; commutativity of the triangles shows that it is independent of the
choice of index (A”, B) and, if c € D, thatO(c+ D) =0. e

Corollary 5.38. Let A be a left R-module, let J be a directed set, and let
(Aj)jes be a family of submodules of A. Then

lim, A; = JA; and lim A/A; = A/ A
J

Proof.  For the first result, apply the proposition when C = | J; A;, D = {0},
A = (Aj)jes, and B = {D}. For the second result, apply the proposition
when A = {A}and B = (Aj)jes. o

We will need the following technical result.
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Lemma 5.39 (Lazard). Let R be a ring and let M be a left R-module.

(1) Then M = li_r)nl Gi, where every G; is finitely presented and I is a
(C, D)-system (hence is directed) with M = C/D.

(ii) The (C, D)-system I is universal with respect to all homomorphisms
from finitely presented modules to M : given (A, B) € I, a finitely pre-
sented X, and maps p: X — M ando: A/B — X with ax p = po,
there exist (A’, B') € I with (A’, B') > (A, B) and an isomorphism
7: X — A'/B’ making the following diagram commute.

YA B

/ T w\

A

A'/B’

Proof.

(i) Let C be the free left R-module with basis* M x N, let 7: C — M
be defined by (m,n) +— m, and let D = ker; since m is surjective,
we have C/D = M. Define A to be all those submodules of C gen-
erated by a finite subset of M x N (so that each A € A is finitely
generated free), and define B to be all the finitely generated submod-
ules of D. It is easy to check that (C, D, A, B) is a (C, D)-system, so
that I = I(C, D, A, B) is a directed set. If (A, B) € I, then A/B is
finitely presented (for both A and B are, by definition, finitely gener-
ated). Therefore, h_r)nl (A/B) = C/D = M, by Proposition 5.37.

(ii) Given the top triangle, our task is to find (A’, B’) € I with (A’, B’) >
(A, B) and an isomorphism 7: X — A’/B’ making the augmented
diagram commute. We first construct the following auxiliary diagram
for some (A*, B*) € I.

0 D C M 0
! | e
0 B* A* X 0
B
A*/B*
Since A € A, it is a free module with basis {(m,n1), ..., (me, ne)};
choose N > n; fori = 1,...,£. Now X is finitely presented; let X =

4This part of the lemma can be proved if C were defined as the free module with basis
M ; the reason for the larger basis M x N will appear in part (ii).
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(x1,...,xp). Foreach j < p,let p(x;) = 7 (y;), where y; € C; define
A* to be the free submodule of C with basis {(7y;, N + j) for j < p};
note that A* € A. If we define B: A* — X by B: (7y;, N+ j) — xj,
then the right-hand square commutes:

pB:(yj, N+ j) = plxj) =m(y)).

The map B is surjective, and its kernel B* is finitely generated, by
Corollary 3.13; thus, B* € B and (A*, B*) € I. The map induced
by B, namely, *: a* + B* — Ba* for all a* € A*, is an isomorphism
A*/B* — X, by the First Isomorphism Theorem.

Now (A, B) £ (A*, B*), but we use it to construct (A’, B) and .
Define A” = A @ A* € C (A’ is an internal direct sum because the
bases of A and A™ are disjoint subsets of the basis of C). Since the
isomorphism B* is surjective, there exist z; € A*, for each i < £, with

o((mi,nj) + B) = B*(zi + B").

Define B’ = (B, B*, (m;, n;) — z; fori < £). Obviously, B’ is finitely
generated. We claim thatifa € A, a* € A*, and o (¢ + B) = f(a*) in
X, then the elementa —a™ € A @ A* C C lies in ker 7.

a+D=aa+ B) = po(a+ B) = ppa”)
= pB*a* + B*) =a(@* + B*)=a" + D.
Hence, B € D =kerm, (A, B") € I,and (A, B) < (A’, B)).
Write ¢ = (pﬁ,”%/: A/B — A’/B' and ¢* = (pﬁiﬁ*: A*/B* —
A'/B’; thus, if a € A and a* € A* then ¢:a + B + a + B’ and
@*: a* + B* — a* + B'. Let us see that *8* 'o = ¢ and that

@™ is an isomorphism. We saw above that if « = (m;,n;) € A and
a* =z; € A*, theno(a + B) = B*(a™ + B*). Hence,

¢* B 'o(a+ B) = ¢*a* + B*) =a* + B =a+ B =g+ B),

the next-to-last equation holding because a — a* € B’, by construction.
Recall that A" = A@® A*. If a € A, then we have just seen thata + B’ =
¢(a + B) = ¢*B* lo(a + B) € img*; if a* € A*, then a* + B’ =
¢*(a* + B*). It follows that ¢* is surjective.

Suppose that p*(a* + B*) = a* + B’ = 0; that is, a* € B’ N A*. Now
a* € B'saysthata®* =b+b*+ ) ; ri((mi, n;) — zi); that is,

a* = (b + Zri(mi» ni)) + (b* — Zrizi>a 1

1
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where b € B, b* € B*, and r; € R. Since a* € A*, unique expression
inA"=A@A* givesb+)_, ri(m;,n;) =0,sothat ) ; rj(m;, n;) € B.
Now

Zrm + B* = Zriﬁ*_la((ml', ni) + B)
i i
= ,B*_la<2r,~(m,-, n;) + B) =0+ B*,
i
so that ) . riz; € B*. Equation (1) says a* = b* — ) . r;z; € B*; that
is, a* € B*. Therefore, ¢* is an isomorphism.

Assemble the maps into a commutative diagram:

A'/B’

Define 7: X — A'/B' by t = ¢*B*~'. Now t is an isomorphism,
for both 8* and ¢* are isomorphisms. Consider the diagram in the
statement of this proposition. The left triangle commutes, for o =
¢*B* 'o = ¢. Finally, the right-hand triangle commutes: o't =

o'l = (x/(p*a* Yo = (@'¢*)a*"'p = p, the last equation hold-
ing because o’¢* = «* in the direct system. e

ﬂ*

el
\

Theorem 5.40 (Lazard). For any ring R, a left R-module M is flat if and
only if it is a direct limit (over a directed index set) of finitely generated free
left R-modules.

Proof.  Sufficiency is Proposition 5.34. For the converse, let M be flat, and
let I = I(C, D, A, B) be the (C, D)-system in Lemma 5.39(1) with M =
C/D. Define

J={(A,B) €l : A/Bis free}.

The result will follow from Exercise 5.22 on page 255 if we show that J is a
cofinal subset of 1.

Since C/D is flat, the map Homg (X, R) g C/D — Homg(X, C/D),
givenby f®(c+ D) — [¢: x — f(x)(c+ D)], is an isomorphism for every
finitely presented left R-module X, by Exercise 3.34 on page 152. Given
(A, B) € I, the insertiona: A/B — C/D, taking a + B + a + D, lies in
Homgz(A/B,C/D) = Homg(A/B, R) ®g C/D. If we write ¢ = ¢ + D for
c € Canda = a+Bfora € A, thenthereexistoy, ...,o0, € Homg(A/B, R)
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and yi,...,y, € C/D witha(@) = ) _; 0;(@)y;. Define o: A/B — R" by
o(a) = (oi(@),...,04(@)),and p: R" — C/D by p(ri,...,rn) = Y ; IiVi.
Now o = po. By Lemma 5.39(ii), there are (A’, B’) € I with (A, B) <
(A’, B') and an isomorphism A’/B’ = R". Therefore, (A’, B') € J, and J is
cofinal in 7, as desired. e

Exercises

*5.17 (i) Let (A;,)nen be afamily of isomorphic abelian groups; say,
A, = A for all n. Consider inverse systems {A,, f,"} and
{Ay, gi'}, where each f;" = 0 and each g;;' is an isomor-
phism. Prove that the inverse limit of the first inverse sys-
tem is {0} while the inverse limit of the second inverse sys-
tem is A. Conclude that inverse limits depend on the mor-
phisms in the inverse systems.
(ii) Give an example of two direct systems having the same
abelian groups and whose direct limits are not isomorphic.
*5,18 Let {M;, (p;'.} be a direct system of R-modules over an index set /,
and let F: kMod — C be a functor to some category C. Prove that
{FM;, F(pi.} is a direct system in C if F is covariant, while it is an
inverse system if F is contravariant.
Hint. If we regard the direct system as a functor D: I — rMod,
then the composite F D is a functor I — C.

5.19 Give an example of a direct system of modules, {A;, o}, over some
directed index set I, for which A; # {0} for all i and h_r)n A; = {0}.
*5.20 (i) Prove that End(Z(p®>)) = Z, as rings, where Z, is the
ring of p-adic integers.
Hint. A presentation for Z(p®°) is

(ag,ay,az..., | pag =0, pa, = a,—1 forn > 1).

(ii) Prove that the additive group of Z,, is torsion-free.

Hint. View Z, as a subgroup of [ [, I .
*521 Let0 - U — V — V/U — 0 be an exact sequence of left
R-modules.

(i) Let{U;, oz",.} be a direct system of submodules of U, where
(ocj.: Ui — Uj)i<; are inclusions. Prove that {V/U;, ei.}
is a direct system, where each ez.: V/U; — V/Uj is en-
largement of coset.

(ii) Ifli_rr)1U,- = U, prove that li_r)n(V/Ui) =V/U.
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*5.23

*5.24

5.25

5.26
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(i) Let K be a cofinal subset of a directed index set [ (that is,
foreachi € I, there is k € K withi < k). Let {M;, ga;}

be a direct system over /, and let {M;, (pj.} be the subdirect
system whose indices lie in K. Prove that the direct limit
over [ is isomorphic to the direct limit over K.

(ii) Let K be a cofinal subset of a directed index set I, let
{M;, (p?} be an inverse system over /, and let {M;, (p?} be
the subinverse system whose indices lie in K. Prove that
the inverse limit over / is isomorphic to the inverse limit
over K.

(iii) A partially ordered set / has a top element if there exists
oo € [ withi <ooforalli e I. If {M,-,go;.} is a direct
system over /, prove that

(iv) Show that part (i) may not be true if the index set is not
directed.

Hint. Pushout.

Prove that a ring R is left noetherian if and only if every direct limit
(with directed index set) of injective left R-modules is itself injec-
tive.

Hint. See Theorem 3.39.

Let
D—=C
ﬁj( ig
B——A

f

be a pullback diagram in Ab. If there are ¢ € C and b € B with
gc = fb, prove that there exists d € D with ca(d) and b = B(d).
Hint. Define p: Z — C by p(n) = nc, and define g: Z — B
by g(n) = nb. There is a map 6: Z — D making the diagram
commute; define d = 6(1).

Consider the ideal J = (x) in k[x], where k is a commutative ring.
Prove that the completion ]}E](k[x] /J") of the polynomial ring k[x]
is k[[x]], the ring of formal power series.

In gMod, let r: {A;, a;‘.} — {B;, ,3;'.} and s: {B;, ,3;1} — {C;, y;f}
be morphisms of inverse systems over any (not necessarily directed)
index set /. If
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. . . <~ <~
is exact for each i € I, prove that there are homomorphisms r, s
given by the universal property of inverse limits, and an exact se-
quence

0— limA; > lim B; > lim C;.
<« < pa

5.27 Definition. A category C is complete if 1(&1 A; exists in C for every

inverse system {A;, 1//l.j } in C; a category C is cocomplete if 1i_n>1Al-

exists in C for every direct system {A;, goj.} inC.

Prove that a category is complete if and only if it has equalizers
and products (over any index set). Dually, prove that a category is
cocomplete if and only if it has coequalizers and coproducts (over
any index set).

*5.28 Prove that if T: gkMod — Ab is an additive left exact functor pre-
serving direct products, then T preserves inverse limits.
Hint. Consider an inverse limit as the kernel of a map between
direct products.

5.3 Adjoint Functor Theorem for Modules

Recall the adjoint isomorphism, Theorem 2.75: given modules Ag, g Bs, and
Cs, there is a natural isomorphism

74,8.c: Homg(A ®g B, C) — Hompg(A, Homg(B, C)).
Write F = 1 ®p B and G = Homg (B, [J), so that the isomorphism reads
Homg(FA, C) = Homg(A, GC).
If we pretend that Hom([J, [J) is an inner product, then this reminds us of
the definition of adjoint pairs in Linear Algebra: if 7: V — W is a linear
transformation between vector spaces equipped with inner products, then its
adjoint is the linear transformation 7*: W — V such that

(Tv, w) = (v, T*w)

forall v € V and w € W. This analogy explains why the isomorphism 7 is
called the adjoint isomorphism.



5.3 ADJOINT FUNCTOR THEOREM FOR MODULES 257

Definition. Let F: C — D and G: D — C be covariant functors. The
ordered pair (F, G) is an adjoint pair if, for each C € obj(C) and D € obj(D),
there are bijections

7c,p: Homp(FC, D) — Hom¢(C, GD)

that are natural transformations in C and in D.

In more detail, naturality says that the following two diagrams commute
forall f: C'— CinCandg: D — D' inD:

Ff*
Homp (FC, D) L% Homp(FC', D)

TC.D J/ \ch/’ D

Hom¢(C, GD) 7> Hom¢(C’, GD);

Homp(FC, D) —~ Homp(FC, D')

c,D \L \LTC,D’

Hom¢(C, GD) “Gor Hom¢(C, GD').

Example 5.41.

®

(ii)

(iii)

If B = grByg is a bimodule, then (D ®pr B, Homg(B, D)) is an adjoint
pair, by Theorem 2.75. Similarly, if B = gBpg is a bimodule, then
(B ®r O, Homg(B, [)) is an adjoint pair, by Theorem 2.76.

Let U : Groups — Sets be the forgetful functor which assigns to each
group G its underlying set and views each homomorphism as a mere
function. Let F': Sets — Groups be the free functor defined in Ex-
ercise 1.6 on page 33, which assigns to each set X the free group FX
having basis X. The function

x5 . HomgGroups(F X, H) — Homgets(X, U H),

given by f + f|X, is a bijection (its inverse is ¢ +> @, where X, being
a basis of F X, says that every function ¢: X — H corresponds to a
unique homomorphism ¢: FX — H). Indeed, tx g is a natural bijec-
tion, showing that (F, U) is an adjoint pair of functors. This example
can be generalized by replacing Groups by other categories having free
objects; e.g., kMod or Modp.

If U: ComRings — Sets is the forgetful functor, then (F, U) is an
adjoint pair where, for any set X, we have F(X) = Z[X], the ring
of all polynomials in commuting variables X. More generally, if k is
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a commutative ring and ComAlg; is the category of all commutative
k-algebras, then F(X) = k[X], the polynomial ring over k. This is
essentially the same example as in part (ii), for k[ X] is the free k-algebra
onX. <«

For many examples of adjoint pairs of functors, see Herrlich—Strecker,
Category Theory, p. 197, and Mac Lane, Categories for the Working Mathe-
matician, Chapter 4, especially pp. 85-86.

Example 5.42. Adjointness is a property of an ordered pair of functors; if
(F, G) is an adjoint pair of functors, it does not follow that (G, F) is also an
adjoint pair. For example, if F = [J® B and G = Hom(B, ), then the ad-
joint isomorphism says that Hom(A, B ® C) = Hom(A, Hom(B, C)) for all
A and C; that is, Hom(F A, C) = Hom(A, GC). It does not say that there an
isomorphism (natural or not) Hom(Hom(B, A), C) = Hom(A, B ® C). In-
deed, if A =Q, B =Q/Z, and C = Z, then Hom(GQ, Z) % Hom(Q, FZ);
that is,

Hom(Hom(Q/Z, Q), Z) % Hom(Q, (Q/Z) ® Z),

for the left side is {0}, while the right side is isomorphic to Hom(Q, Q/Z),
which contains the natural map Q — Q/Z. <«

F

Definition. Let C = D be functors. If (F, G) is an adjoint pair, then we say
G

that F has a right adjoint and that G has a left adjoint.

Let (F, G) be an adjoint pair, where F: C — Dand G: D — C. If
C € obj(C), then setting D = FC gives a bijection t: Homp(FC, FC) —
Hom¢(C, GFC), so that n¢, defined by

nc =t(lrc),

is a morphism C — G FC. Exercise 5.30 on page 271 says thatn: 1¢ - GF
is a natural transformation; it is called the unit of the adjoint pair.

Theorem 5.43. Let (F, G) be an adjoint pair of functors, where F: C — D
and G: D — C. Then F preserves direct limits and G preserves inverse
limits.

Remark. There is no restriction on the index sets of the limits; in particular,
they need not be directed. <«
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Proof. Let I be a partially ordered set, and let {C;, (p;'.} be a direct system in

C over I. By Exercise 5.18 on page 254, {F C;, F(p;} is a direct system in D
over /. Consider the following diagram in D:

where «;: C; — lim C; are the maps in the definition of direct limit. We
must show that there exists a unique morphism y: F(limC;) — D making
the diagram commute. The idea is to apply G to this diagram, and use the
unit 7: ¢ — GF to replace GF(li_r)nCi) and GFC; by li_nQCi and C;, re-
spectively. In more detail, Exercise 5.30 on page 271 gives morphisms 7 and
n; making the following diagram commute:

limC; — L GF(imC;)
— —

aiT TGFO{,‘

C; GFC;.

Ni

Apply G to the original diagram and adjoin this diagram to its left:

B
limC; Z_L GF(lim C;) \GD
— —
o GFo; Gfi
SN G GF(C) /g
% orej

Cj———=GF(C)).
J

This diagram commutes: we know that (G F goi)n,' =7 j(,oj., since 1 is nat-
ural, and Gf; = ij(GF(pj.), since G is a functor; therefore, Gfin, =

ij(GFq)j.)ni = Gf; njgo;. By the definition of direct limit, there exists a
unique S: h_r)nCl- — GD [thatis, B € Homc(li_r>n Ci, GD)] making the dia-
gram commute. Since (F, G) is an adjoint pair, there exists a natural bijection

T: HomD(F(li_n)l Ci),D) — Homc(li_r)n Ci,GD).

Define
y = 1:_1(,8) c HomD(F(li_IgCi), D).
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We claim that y: F (1'21)1 Ci;) — D makes the first diagram commute. The
first commutative square in the definition of adjointness, which involves the
morphism «; : C; — h_r)n C;, gives commutativity of

Homp(F (lim C;), D) ™ Homp (FC;, D)

Homc(li_r>n Ci, GD) —— Home¢(C;, GD).
¢

Thus, 7(Fo;)* = a1, and so o =

; (Fa;)*t~!. Evaluating on B, we
have

(Fap)*t Y (B) = (Fa))*y = yFa;.
On the other hand, since Ba; = (G f;)n;, we have
t g (B) = v (Bar) = T (G ).

Therefore,
yFo; =t ' (Gfny).

The second commutative square in the definition of adjointness, for the mor-
phism f;: FC; — D, gives commutativity of

Homp (FC;, FC;) L2~ Homp(FC;. D)

Hom¢(Ci, GFC;) < Hom¢(Ci, GD);

that is, 7(f;)x = (Gfi)«t. Evaluating at 1rc;, the definition of n; gives
T(fi)«(1) = (Gfi)«t (1), and so tf; = (Gf;)«n;. Therefore,

yFai =t ' (Gfon) =t 'fi = £,

so that ¥ makes the original diagram commute. We leave the proof of the
uniqueness of y as an exercise for the reader, with the hint to use the unique-
ness of f.

The dual proof shows that G preserves inverse limits. e

We are now going to characterize the Hom and tensor functors on module
categories, yielding a necessary and sufficient condition for a functor on such
categories to be half of an adjoint pair (Theorems 5.51 and 5.52).
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Lemma 5.44.

(1) If M is a right R-module and m € M, then ¢,,: R — M, defined by
r +— mr, is a map of right R-modules. In particular, if M = R and
u € R, then ¢,: R — R is a map of right R-modules.

(i1) If M is a right R-module, m € M, and u € R, then

Pmu = PmPu-
(i) Let f: M — N be an R-map between right R-modules. If m € M,
then
Cfrm = fOm-
Proof.

(1) @ 1s additive because m(r + s) = mr + ms; ¢, preserves scalar mul-
tiplication on the right because @, (rs) = m(rs) = (mr)s = @ (r)s.

(i) Now @ u +— (mr)u, while @0, u +— @, (ru) = m(ru). These
values agree because M is a right R-module.

(iii) Now @y, 0 u > (fm)u, while f@y: u + f(mu). These values agree
because f is an R-map. e

Theorem 5.45 (Watts). If F: Modg — Ab is a right exact additive
functor that preserves direct sums, then F is naturally isomorphic to D Qg B,
where B is F(R) made into a left R-module.

Proof. We begin by making the abelian group FR [our abbreviation for
F(R)] into a left R-module. If M is a right R-module and m € M, then
¢m: R — M, defined by r — mr, is an R-map, by Lemma 5.44(i), and so
the Z-map F¢,,: FR — FM is defined. In particular, if M = R and u € R,
then ¢, : R — R and, for all x € FR, we define ux by

ux = (Foy)x.

Let us show that this scalar multiplication makes F R into a left R-module.
If M = Rand u,v € R, then Fo,, Fp,: FR — FR, and Lemma 5.44(ii)
gives ¢,y = @, ¢,. Hence,

(uv)x = (Fou)x = F(oupy)x = (Fo,)(Fey)x = u(vx).

Denote the left R-module FR by B, so that [l ® g B: Modr — Ab.
We claim that tyy: M x FR — FM, defined by (m, x) — (F¢,)x, is R-
biadditive; that is, Ta; (mu, x) = ty(m, ux) forall u € R. Now

Ty (mu, x) = (Fomu)x = F(@neu)x,
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by Lemma 5.44(ii). On the other hand,
tm(m, ux) = (Fop)ux = (Fon) (Feu)x = (Fgnu)x.

Thus, t)7 induces a homomorphism oy : M @g B — FM. We claim that
o: 0 ®pgr B — F is anatural transformation; that is, the following diagram
commutes for R-maps f: M — N.

M@rB2t s FyM
rel) I
N®RBT>FN

Going clockwise, m @ x — (Fguy,)x — (Ff)(Fon)x; going counterclock-
wise, m @ x = f(m) @ x = (Form)x = F(fom)x = (Ff)(Fem)x, by
Lemma 5.44(iii).

Now or: R ®g B — FR is an isomorphism (because B = F'R); more-
over, since both [J®g B and F preserve direct sums, 04: AQrB — FAisan
1somorphism for every free right R-module A. Let M be any right R-module.
There are a free right R-module A and a short exact sequence

O—>K—%A—>M—>0;

there is also a surjection f: C — K for some free right R-module C. Splic-
ing these together, there is an exact sequence

cLas Mmoo

Now the following commutative diagram has exact rows, for both [ ® B
and F are right exact.

CRRB——AQrB—M®rB——=0

oc i iaA \L(TM

FC FA FM 0

Since o¢ and o4 are isomorphisms, the Five Lemma shows that o is an
isomorphism. Therefore, o is a natural isomorphism. e

Remark. If, in Theorem 5.45, F takes values in Modg instead of in Ab,
then the first paragraph of the proof can be modified to prove that the right
S-module F'R may be construed as an (R, S)-bimodule; thus, the theorem
remains true if Ab is replaced by Mods. <«
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Example 5.46. If R is a commutative ring and » € R, then there is a functor
F: pMod — rMod that takes an R-module M to M/rM [if o: M — N is
an R-map, define Fo: M/rM — N/rNbym+rM +— ¢(m)+ rN]. The
reader may check that F is a right exact functor preserving direct sums, and
so it follows from Watts’ Theorem that F is naturally isomorphic to [] ®p
(R/rR),for FR = R/rR. This generalizes Proposition 2.68. <«

Corollary 5.47. Let R be a right noetherian ring, and let Fg be the category
of all finitely generated right R-modules. If F: Fr — Modg is a right exact
additive functor, then F is naturally isomorphic to J®p B, where B is F(R)
made into a left R-module.

Proof. The proof is almost the same as that of Theorem 5.45 coupled with
the remark after it. Given a finitely generated right R-module M, we can
choose a finitely generated free right R-module A mapping onto M. More-
over, since R is right noetherian, Proposition 3.18 shows that the kernel K of
the surjection A — M is also finitely generated (if K were not finitely gener-
ated, then there would be no free right R-module in the category Fz mapping
onto K). Finally, we need not assume that F preserves finite direct sums, for
Corollary 2.21 shows that this follows from the additivity of F'. e

We now characterize contravariant Hom functors.

Theorem 5.48 (Watts). If H: gRMod — Ab is a contravariant left ex-
act additive functor that converts direct sums to direct products, then H is
naturally isomorphic to Homg (O, B), where B is H(R) made into a right
R-module.

Proof.  We begin by making the abelian group H R into a right R-module.
As in the beginning of the proof of Theorem 5.45, if M is a right R-module
and m € M, then the function ¢,,: R — M, defined by r +— mr, is an
R-map. In particular, if M = Randu € R, then Hp,: HR — HR, and
Lemma 5.44(ii) gives ¢,y = @, ¢y forall u, v € R. If x € HR, define

ux = (Hey)x.
Here, HR is a right R-module, for the contravariance of H gives

(uv)x = (Hpyp)x = H(pupy)x = (Hpy)(Hey)x = v(ux).

Define oy : HM — Hompg(M, B) by opy(x): m +— (Hey)x, where
x € HM. It is easy to check that 0 : H — Hompg([J, B) is a natural transfor-
mation and that o is an isomorphism. The remainder of the proof proceeds,
mutatis mutandis, as that of Theorem 5.45. e

We can characterize covariant Hom functors, but the proof is a bit more
complicated.
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Definition. A left R-module C is called a cogenerator of gMod if, for
every left R-module M and every nonzero m € M, there exists an R-map
g: M — C with g(m) # 0.

Exercise 3.19(i) on page 130 can be restated to say that (Q/7Z is an injective
cogenerator of Ab.

Lemma 5.49. There exists an injective cogenerator of gMod.

Proof. Define C to be an injective left R-module containing €, R/I, where
I varies over all the left ideals in R (the module C exists, by Theorem 3.38).
If M is a left R-module and m € M is nonzero, then (m) = R/J for some
left ideal J. Consider the diagram

where i is the inclusion and f is an isomorphism of (m) to some submodule
of C isomorphic to R/J. Since C is injective, there is an R-map g: M — C
extending f,andso g(m) # 0. e

An analysis of the proof of Proposition 5.21 shows that it can be gener-
alized by replacing Hom(A, [J) by any left exact functor that preserves di-
rect products. However, this added generality is only illusory, in light of the
following theorem of Watts characterizing representable functors on module
categories.

Theorem 5.50 (Watts). IfG: RMod — Ab is a covariant additive functor
preserving inverse limits, then G is naturally isomorphic to Homg (B, UJ) for
some left R-module B.

Proof. For a module M and a set X, let M¥ denote the direct product of
copies of M indexed by X; more precisely, MX is the set of all functions
X — M. In particular, 1y, € MM and we writee = 1y € MM . Ifm e M
and 7,,: MM — M is the mth projection, then the mth coordinate of e is
T, (e) = m.

Choose an injective cogenerator C of gMod. Let IT = C¢C, and let
its projection maps be p,: I — C for all x € GC. Since G preserves
inverse limits, it preserves direct products, and so GII is a direct product
with projection maps Gp,. More precisely, if 7, : (GC)°C — GC are the
projection maps, then there is a unique isomorphism 6 making the following
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diagrams commute for all x € GC:

GIl (GC)GC¢

GC.
Thus, (Gpy)0 = m, for all x € GC. Write
e=1gc € (GO)C.
Define t: Homg(I1, C) — GC by

T: f > (Gf)(Oe).

If f: 1 — C,then Gf: GI1 — GC; since e € GII, t(f) = (Gf)(Oe)
makes sense.

The map t is surjective, for if x € GC, then t(py) = (Gpy)(Be) =
7. (e) = x. We now describe ker . If § C TI1, denote the inclusion S — TII
by is. Define

B = ﬂ S, where S = {submodules S C I : fe € im G(is)}.
SeS

We show that S is closed under finite intersections. All the maps in the first
diagram below are inclusions, so that igh = ign7. Since G preserves inverse
limits, it preserves pullbacks; since the first diagram is a pullback, the second
diagram is also a pullback.

SNT2>5 G(sNT)*=Gs
Mi iis GM\L iG(is)
T ——11 GT —> GII
ir Glir)

By the definition of S, there are u € G S with (Gis)u = 0e and v € GT with
(Git)v = Oe. By Exercise 5.24 on page 255, there is d € G(S N T) with
(Gig)(GA)d = fe. But (Gig)(GA) = Gignr, so that fe € im G (isnr) and
SNT e S. It now follows from Example 5.18(ii) that B = [ S = 1(&1 S, so
that B € S.

Now G is left exact, so that exactness of 0 — ker f SNy | —f> C gives

G
exactness of 0 — G (ker f) ﬂ) GI1 —f> GC. Thus, im Gv = ker(Gf). If

j:B—11

is the inclusion, then ker 7 = ker j*, where j*: f + fj is the induced map
j*: Homg(I1, C) — Homg(B, C): if f € kert, then (Gf)fe = 0, and
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fe € kerGf = im Gv; thus, ker f € S. Hence, B C ker f, fj =0, f €
ker j*, and ker T C ker j*. For the reverse inclusion, assume that f € ker j*,
so that B C ker f. Then imGj € imGv = ker Gf. But fe € ker Gf; that
is, (Gf)f8e =0, and f € ker 7. Therefore, ker j* = ker .

In the diagram

0 — Hompg(IT/B, C) — Homg(IT, C) L>H0mR(B, C)—=0

N

0 — Homg(I1/B, C) — Hompg(I1, C) GC 0,

T

the first two vertical arrows are identities, so that the diagram commutes. Ex-

actness of 0 — B —> 1 — II /B — 0 and injectivity of C give exactness
of the top row, while the bottom row is exact because t is surjective and
ker t = ker j*. It follows that the two cokernels are isomorphic: there is an
isomorphism

oc: Homg(B,C) — GC,

given by oc: f +— (Gf)Be (for the fussy reader, this is Proposition 2.70).

For any module M, there is a map M — CHOMxWM.C) oiven by m >
(fm), that “vector” whose fth coordinate is fm; this map is an injection
because C is a cogenerator. Similarly, if N = coker(M — CHomg(M.C)y
there is an injection N — CY for some set Y'; splicing these together gives an
exact sequence

00— M4>CH0mR(M7C) - — >CY
\ i
N.

Since both G and Hompg (B, L) are left exact, there is a commutative diagram
with exact rows

0 — Homg (B, M) — Hompg (B, CHomz(M.C)y — Homg (B, CY)
|
oM | lO'CHomR(M,C) lG‘CY
\
0 GM GCHomR(M’C)

GCY.

The vertical maps o -Homg.c) and oy are isomorphisms, so that Proposi-
tion 2.71 gives a unique isomorphism oy, : Homg(B, M) — GM. It re-
mains to prove that the isomorphisms oy constitute a natural transformation.
Recall, for any set X, that Hompg (B, C*) = Homg(B, C)X via f — (px f),
where p, is the xth projection. The map o-x: Homg(B, cYy - GcX
is given by f ((prf)Qe) = ((prf))Qe = (Gf)fe. Therefore,
oy : Hompg(B, M) — GM is given by f +— (Gf)fe, and Yoneda’s Lemma,
Theorem 1.17, shows that o is a natural isomorphism. e
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Remark. No easy description of the module B is known. However, we know
that B is not G (R). For example, if G = Homz(Q, ), then Watts’ Theorem
applies to give Homgz (B, ) = Homgz(Q, ). Now Corollary 1.18(iii) says
that B = Q, but B Z G(Z) = Homz(Q, Z) = {0}. <«

Theorem 5.51. If F: Modgr — Ab is an additive functor, then the following
statements are equivalent.
(1) F preserves direct limits.
(i1) F is right exact and preserves direct sums.
(i) F =20 Q®pg B for some left R-module B.

(v) F has a right adjoint; there is a functor G: Ab — Modg so that
(F, G) is an adjoint pair.

Proof.
(i) = (i1) Cokernels and direct sums are direct limits.
(i) = (iii) Theorem 5.45.
(ili) = (iv) Take G = Hompg (B, 0J) in the adjoint isomorphism theorem.

(iv) = (i) Theorem 5.43. o

Theorem 5.52. [fG: gMod — Ab is an additive functor, then the following
statements are equivalent.

(1) G preserves inverse limits.
(i) G is left exact and preserves direct products.
(iii) G is representable; i.e., G = Hompg (B, ) for some left R-module B.

(iv) G has a left adjoint; there is a functor F: Ab — rMod so that (F, G)
is an adjoint pair.

Proof.
(i) = (ii) Kernels and direct products are inverse limits.
(i1) = (iii) Theorem 5.50.
(ili) = (iv) Take F = J ®g B in the adjoint isomorphism theorem.

(iv) = (i) Exercise 5.28 on page 256. e
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The Adjoint Functor Theorem says that a functor G on an arbitrary cat-
egory has a left adjoint [that is, there exists a functor F so that (F, G) is an
adjoint pair] if and only if G preserves inverse limits and G satisfies a ““so-
lution set condition” [Mac Lane, Categories for the Working Mathematician,
pp- 116-127 and 230]. One consequence is a proof of the existence of free ob-
jects when a forgetful functor has a left adjoint; see M. Barr, “The existence of
free groups,” Amer. Math. Monthly, 79 (1972), 364-367. The Adjoint Func-
tor Theorem also says that F has a right adjoint if and only if F preserves all
direct limits and satisfies a solution set condition. Theorems 5.51 and 5.52 are
special cases of the Adjoint Functor Theorem.

It can be proved that adjoints are unique if they exist: if (F, G) and
(F, G") are adjoint pairs, where F: A — B and G,G": B — A, then
G = G’; similarly, if (F, G) and (F’, G) are adjoint pairs, then F = F’
(Mac Lane, Categories for the Working Mathematician, p. 83, or May, Sim-
plicial Objects in Algebraic Topology, p. 61). Here is the special case for
module categories.

Proposition 5.53. Ler F: RkMod — Ab and G,G': Ab — rMod be
functors. If (F, G) and (F, G') are adjoint pairs, then G = G'.

Proof. For every left R-module C, there are natural isomorphisms
Hompg(C, GO) = Homyz(FC, ) = Homg(C, G'D).

Thus, Homg (C, ) o G = Homg(C, ) o G’ for every left R-module C. In
particular, if C = R, then Homg (R, [J) = 1, the identity functor on gMod,
andsoG=G'. e

Remark. In Functional Analysis, one works with topological vector spaces;
moreover, there are many different topologies imposed on vector spaces, de-
pending on the sort of problem being considered. We know that if A, B, C
are modules, then the Adjoint Isomorphism, Theorem 2.75, gives a natural
isomorphism

Hom(A ® B, C) = Hom(A, Hom(B, C)).

Thus, J ® B is the left adjoint of Hom(B, [J). In the category of topolog-
ical vector spaces, Grothendieck defined topological tensor products as left
adjoints of Hom(B, [J). Since the Hom sets consist of continuous linear trans-
formations, they depend on the topology, and so topological tensor products
also depend on the topology. <«

The Wedderburn—Artin theorems can be better understood in the context
of determining those abstract categories that are isomorphic to module cate-
gories.



5.3 ADJOINT FUNCTOR THEOREM FOR MODULES 269

Definition. A module P is small if the covariant Hom functor Hom(P, [J)
preserves (possibly infinite) direct sums.

In more detail, if P is small and B = @iel B; hasinjections A; : B; — B,
then Hom(P, Dic; Bi) = P,., Hom(P, B;) has as injections the induced
maps (A;)y: Hom(P, B;) - Hom(P, B).

Example 5.54.

(i) Any finite direct sum of small modules is small, and any direct sum-
mand of a small module is small.

(i1) Since every ring R is a small R-module, by Exercise 2.13 on page 66, it
follows from part (i) that every finitely generated projective R-module
is small. <«

Definition. A right R-module P is a generator of Modpy, if every right R-
module M is a quotient of a direct sum of copies of P.

It is clear that R is a generator of Modg, as is any free right R-module.
However, a projective right R-module may not be a generator. For example,
if R = I, then R = P & Q, where P = I3. The projective module P is not a
generator, for Q = I is not a quotient of a direct sum of copies of P.

Recall that a functor F: C — D is an isomorphism if there is a functor
G : D — C such that the composites G F' and F G are naturally isomorphic to
the identity functors 1¢ and 1p, respectively.

Theorem 5.55 (Morita). Let R be a ring and let P be a small projective
generator of Modg. If S = Endgr (P), then there is an isomorphism

F: MOdS — MOdR

givenby M — M ®g P.

Proof. Notice that P is a left S-module, forif x € P and f,g € S =
Endgr(P), then (g o f)x = g(fx). In fact, P is an (S, R)-bimodule, for
associativity f(xr) = (fx)r, where r € R, is just the statement that f is an
R-map. It now follows from Corollary 2.53 that the functor ¥ : Mods — Ab,
defined by F = [0 ®g P, actually takes values in Modg. Proposition 2.4
shows that the functor G: Homg (P, [J): Modr — Ab actually takes values
in Mods. As (F, G) is an adjoint pair, Exercise 5.30 on page 271 gives natural
transformations G — 1g and 13 — GF, where 1 and 15 denote identity
functors on the categories Modg and Modg, respectively. It suffices to prove
that each of these natural transformations is a natural isomorphism.
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Since P is a projective right R-module, the functor G = Hompg (P, 1)
is exact; since P is small, G preserves direct sums. Now F' = [0 ®g P, as
any tensor product functor, is right exact and preserve sums. Therefore, both
composites G F and F G preserve direct sums and are right exact.

Note that

FG(P) = F(Homg(P, P)) = F(S) = S®s P = P.

Since P is a generator of Modpg, every right R-module M is a quotient of

some direct sum of copies of P. There is an exact sequence K — &P P N

M — 0, where K = ker f. There is also some direct sum of copies of P
mapping onto K, and so there is an exact sequence

@P—)@P—)M%O.

Hence, there is a commutative diagram (by naturality of the upward maps)
with exact rows

b r ®r M 0
T T T

P FGP)—PFGP)— FG(M) —0.

We know that the first two vertical maps are isomorphisms, and so the Five
Lemma gives the other vertical map an isomorphism (just extend both rows
to the right by adjoining — 0, and insert two vertical arrows 0 — 0). Thus,
FG(M)=M,andso 1 = FG.

For the other composite, note that

GF(S)=G(S®s P)=G(P) =Homg(P,P)=S.
If N is any left S-module, there is an exact sequence of the form

@S—)@S—)N—)O,

because every module is a quotient of a free module. The argument now
concludes as that just done. e

Corollary 5.56.
(1) If Risaring and n > 1, there is an isomorphism of categories

MOdR = MOdMat,,(R) .

(1) If R is a semisimple ring and n > 1, then Mat,, (R) is semisimple.
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Proof.  For any integer n > 1, the free module P = B7_, R;, where R; =
R, is a small projective generator of Modpg, and S = Endg(P) = Mat,(R).
The isomorphism F: Modg — Modpay, () in Morita’s Theorem carries
M- M®sP = @; M, where M; = M for all i. Hence, if M is a
projective right R-module, then F (M) is also projective. But every module
in Moda, (r) is projective, by Proposition 4.5 (a ring R is semisimple if and
only if every R-module is projective). Therefore, Mat, (R) is semisimple, e

There is a lovely part of ring theory, Morita theory (after K. Morita),
developing these ideas. A category C is isomorphic to a module category
if and only if it is an abelian category (see Section 5.5) containing a small
projective generator P, and which is closed under infinite coproducts (see
Mitchell, Theory of Categories, p. 104, or Pareigis, Categories and Func-
tors, p. 211). Given this hypothesis, then C = Modg, where S = End(P) (the
proof is essentially that given for Theorem 5.55). Two rings R and S are called
Morita equivalent it Modr = Mods. If R and S are Morita equivalent, then
Z(R) = Z(S); that is, they have isomorphic centers (the proof actually iden-
tifies all the possible isomorphisms between the categories). In particular, two
commutative rings are Morita equivalent if and only if they are isomorphic.
See Jacobson, Basic Algebra 11, pp. 177-184, Lam, Lectures on Modules and
Rings, Chapters 18 and 19, or Reiner, Maximal Orders, Chapter 4.

Exercises

5.29 Give an example of an additive functor H: Ab — Ab that has
neither a left nor a right adjoint.
*5.30 Let (F, G) be an adjoint pair, where F: C — Dand G: D — C,
and let ¢ p: Hom(FC, D) — Hom(C, GC) be the natural bijec-
tion.

(i) If D = FC, there is a natural bijection
tc.rc: Hom(FC, FC) — Hom(C, GFC)

with t(lgc) =nc: C — GFC. Prove thatn: 1¢c — GF
is a natural transformation.

(ii) If C = G D, there is a natural bijection
76p.p: Hom(GD, GD) — Hom(FGD, D)

with 7= Y(1p) = ep: FGD — D. Prove thate: FG —
1p is a natural transformation. (We call ¢ the counit of the
adjoint pair.)



272 SETTING THE STAGE CH. 5

5.31 Let (F, G) be an adjoint pair of functors between module categories.
Prove that if G is exact, then F preserves projectives; that is, if P is
a projective module, then F P is projective. Dually, prove that if F
is exact, then G preserves injectives.

5.32

*5.33

5.34

5.35

()

(ii)

@

(ii)

(iii)

(iv)

(ii)
(iii)
(iv)

@

Let F: Groups — Ab be the functor with F(G) = G/ G/,
where G’ is the commutator subgroup of a group G, and
let U: Ab — Groups be the functor taking every abelian
group A into itself (that is, U A regards A as a not neces-
sarily abelian group). Prove that (F, U) is an adjoint pair
of functors.

Prove that the unit of the adjoint pair (F, U) is the natural
map G — G/G'.

If I is a partially ordered set, let Dir(/, xRMod) denote
all direct systems of left R-modules over /. Prove that
Dir(/, gkMod) is a category and that 121)1 Dir(/, RkMod) —
rMod is a functor.

In Example 1.19(ii), we saw that constant functors define a
functor || : C — CP; to each object C in C assign the con-
stant functor |C|, and to each morphism ¢: C — C’inC,
assign the natural transformation |¢|: |C| — |C’| defined
by |¢|p = ¢. If C is cocomplete, prove that (li_n>1, |J]) is an
adjoint pair, and conclude that h_r)n preserves direct limits.
Let 7 be a partially ordered set and let Inv(/, gkMod) denote
the class of all inverse systems, together with their mor-
phisms, of left R-modules over /. Prove that Inv(/, gkMod)
is a category and that 1(£n Inv(/, RMod) — rMod is a
functor.

Prove that if C is complete, then (|LJ], l(ir_n) is an adjoint pair
and l<ln preserves inverse limits.

If Af € A € A3 C .- is an ascending sequence of sub-
modules of a module A, prove that A/ JA; = (JA/A;;
that is, coker(li_n; A C A= li_n)lcoker(A,' — A).
Generalize part (i): prove that any two direct limits (per-
haps with distinct index sets) commute.

Prove that any two inverse limits (perhaps with distinct in-
dex sets) commute.

Give an example in which direct limit and inverse limit do
not commute.

Define ACC in gMod, and prove that if sMod = rMod,
then sMod has ACC. Conclude that if R is left noetherian,
then § is left noetherian.
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(ii) Give an example showing that xkMod and Modpr are not
isomorphic.

5.36 (i) Recall that a cogenerator of a category C is an object C
such that Hom((J, C): C — Sets is a faithful functor; that
is, if f, g: A — B are distinct morphisms in C, then there
exists a morphism h: B — C with hf # hg. Prove, when
C = grMod, that this definition coincides with the defini-
tion of cogenerator on page 264.

(ii) A generator of a category C is an object G such that
Hom(G,): C — Sets is a faithful functor; that is, if
f.g: A — B are distinct morphisms in C, then there ex-
ists a morphism h: G — A with fh # gh. Prove, when
C = grMod, that this definition coincides with the defini-
tion of cogenerator on page 269.

5.37 We call a functor F: A — B a strong isomorphism if there exists
afunctor G: B - A with GF = 14 and FG = 1g. If Ris a
ring, show that Homg (R, 1J): kMod — grMod (which is naturally
isomorphic to 1,Moed, by Exercise 2.13 on page 66) is not a strong
isomorphism. Conclude that strong isomorphism is not an interest-
ing idea.

5.4 Sheaves

At the beginning of his book, The Theory of Sheaves, Swan asks, “What are
sheaves good for? The obvious answer is that sheaves are very useful in prov-
ing theorems.” He then lists interesting applications of sheaves to Topology,
Complex Variables, and Algebraic Geometry, and he concludes, “the impor-
tance of the theory of sheaves is simply that it gives relations (quite strong
relations, in fact) between the local and global properties of a space.” We
proceed to the definition of sheaves.

Definition. A continuous map p: E — X between topological spaces E
and X is called a local homeomorphism if, for each e € E, there is an open
neighborhood S of e, called a sheet, with p(S) openin X and p|S: § — p(S)
a homeomorphism. The triple (E, p, X) is called a protosheaf” if the local
homeomorphism p is surjective.

5 This term, with a slightly different meaning, was used by Swan in The Theory of
Sheaves. Since protosheaf has not been widely adopted (Swan’s book appeared in 1964),
our usage should not cause any confusion.
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Each of the ingredients of a protosheaf has a name. The space E is called

the sheaf space, p is the projection, and X is the base space. For each x € X,
the fiber p_l (x) is denoted by E and is called the stalk over x.

Pl

X

Fig. 5.1 Protosheaf.

Here are several examples of protosheaves.

Example 5.57.

(1) If X is a topological space and Y is a discrete space, define £ = X x Y,

and define p: E - X by p: (x,y) > x. Ife = (x,y) € Eand V
is an open neighborhood of x, then S = {(v, y) : v € V} is an open
neighborhood of e (because {y} is open in Y) and p|S: § — V =
p(S) is a homeomorphism. The triple (E, p, X) is called a constant
protosheaf.

(ii) The triple (R, p, S') is a protosheaf, where p(x) = >,

(iii) A covering space is a triple (E, p, X) in which each x € X has an open

neighborhood V such that p~1(V) = \U; Si, a disjoint union of open
subsets of £ with p|S;: S; — V a homeomorphism for each i. Every
covering space is a protosheaf.

(iv) If G is a topological group and H is a discrete normal subgroup of G,

then (G, p, G/H) is a covering space, where p is the natural map.

(v) The protosheaf in part (ii) (which is actually a covering space) gives rise

to an example showing that the converse is false. Let £ = (0,3) C R
and let p' = p|E, where p: R — S! is the projection in part (ii).
The map p’ is a local homeomorphism, being a restriction of such, but
(E, p’, S") is not a covering space because there is no open neighbor-
hood V of (1,0) € S! with p~!(V) a disjoint union | J; S;. <«
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Proposition 5.58. Let (E, p, X) be a protosheaf.

()
(i)
(iii)
@iv)

)

The sheets form a base of open sets for E.
p is an open map.
Each stalk E, is discrete.

Let (Uj)ier be a family of open subsets of X, and let U = J;¢; U;. If
f,g: U — Y for some space Y and f|U; = g|U; for alli € I, then
f=g

Let (U;)ier be a family of open subsets of X and, for (i, j) € I x I,
define U jy = U NU;. If (fi: Ug — Y)ier are continuous maps
satisfying fi\Uq, jy = fjlUq,j) forall (i, j) € I x I, then there exists a
unique continuous f: U — Y with f|U; = f; foralli € I.

Proof.

(@)

(ii)

(i)

(iv)

v)

Since, for each e € E, there is a sheet S containing e, the sheaf space
E is the union of all the sheets: £ = | sS. If U C E is open, then
U N S is open for every sheet S, and so U = |Jg(U N S). But every
open subset of a sheet is also a sheet, and so U is a union of sheets; that
is, the sheets comprise a base for the topology of E.

If U C E is open, then p(U) = Jg p(UNS). But p(U N S) is open in
X, because p is a local homeomorphism; thus, p(U) is open, for it is a
union of open sets.

Let e € Ey, and let S be a sheet containing e. If ¢’ € E, and &' # e,
then ¢’ ¢ S, for p|S is injective and p(¢’) = x = p(e). Therefore,
SN E, ={e}, and so E, is discrete.

If x € U, then x € U; for some i, and f(x) = (f|U;)x = (glU;j)x =
g(x). Hence, f = g.

This is proved in Example 5.15. e

There are two equivalent versions of sheaf: the first, defined as a special
kind of protosheaf, we call an etale-sheaf (the French term for sheaf space is
espace étalé); the second, defined as a special kind of presheaf, we call a sheaf
(recall Example 1.14: if C is a category and U is the topology of a topological
space X viewed as a category, then a presheaf on X is a contravariant functor
P:U— C).



276 SETTING THE STAGE CH. 5

Definition. If p: E — X is continuous, where X and E are topological
spaces, then S = (E, p, X) is an etale-sheaf of abelian groups if

(1) (E, p, X) is a protosheaf,
(i1) the stalk E is an abelian group for each x € X,
(iii) inversion and addition are continuous.

The meaning of continuity of inversion e = —e is clear, but we elaborate
on the definition of continuity of addition. Define

E+E=|J(ExE)={(e.e) € ExE: ple) = p(e)}.

xeX

Addition a: E + E — E is given by a: (e, e') — e + €/, and continuity
means, of course, that for every open neighborhood V of ¢ + ¢’ in E, there
exists an open neighborhood U of (e, ¢’) in E + E with «(U) € V. Since
E x E has the product topology and £ + E C E x E, there are open neigh-
borhoods H C E of eand K C E of ¢/, witha((H x K)N(E+E)) € V. If
we define H + K = {(h,k) e H x K : p(h) = p(k)},thena(H + K) C V.
The definition of etale-sheaf can be modified so that its stalks lie in alge-
braic categories other than Ab, such as gkMod or ComRings. For example,
the structure sheaf of a commutative ring R has base space Spec(R) with
the Zariski topology, sheaf space £ = Upespec( Rr) Rp suitably topologized,
and projection p: E — Spec(R) defined by p(e) = p forall e € Ry (see
Example 5.95). Of course, axiom (iii) is modified so that all the algebraic op-
erations are continuous. Even though the results in this section hold in more
generality, we assume throughout that stalks are merely abelian groups.

Definition. Let S = (E, p, X) and S’ = (E’, p’, X) be etale-sheaves over
a space X. An etale-map ¢: S — S’ is a continuous map ¢: E — E’ such
that p'9 = p (so that 9|E,: E, — E| forall x € X), and each ¢|E, is a
homomorphism. We write Home (S, S”) for the set of all etale-maps.

It is easy to check that all etale-sheaves of abelian groups over a topolog-
ical space X form a category, which we denote by

Shei (X, Ab).

Proposition 5.59. LetS = (E, p, X)and S’ = (E’, p’, X) be etale-sheaves
over a topological space X.

(1) Home( (S, &) is an additive abelian group.
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(i1) The distributive laws hold: given etale-maps

@
xr-%s=s By,
12

where X and )Y are etale-sheaves over X, then
Blo+v)=PBp+ By and (¢p+VY)a=ga+Ya.
(iii) Every etale-map ¢: S — S’ is an open map E — E’.

Proof. Definegp+v: E — E'byo+: et @(e)+y(e). Verification of
the first two statements is routine. The third follows from Proposition 5.58(1),
which says that the sheets form a base of open sets for E. e

It will be simpler to give examples of etale-sheaves once we see the
(equivalent) definition of sheaf in terms of presheaves, and so we merely de-
scribe an example without verifying that all the particulars in the definition of
etale-sheaf actually hold.

Example 5.60.

(i) Let X be a topological space, and let A be an abelian group equipped
with the discrete topology. Define the constant etale-sheaf at A to be
(X x A, p, X), where X x A has the product topology and p: (x, a) >
x is the projection. In particular, if A = {0}, then the constant sheaf at
A is called the zero sheaf.

(i1) The protosheaf (R, p, S 1_), where p: R — S 1 is the local homeomor-
phism given by x > ¢27*, is not an etale-sheaf of abelian groups (for
its stalks are not abelian groups). <«

Definition. LetS’ = (E/, p/, X) and S = (E, p, X) be etale-sheaves. Then
S’ is an subetale-sheaf of S if E’ C E and the inclusion (: E/ — E is an
etale-map.

By Proposition 5.59, if (E’, p/, X) is a subetale-sheaf of (E, p, X), then
E' is an open subset of E. The reader may prove the converse: if £’ is an open
subset of E and p’ = p|E’, then (E’, p’, X) is a subetale-sheaf of (E, p, X).
Even though the next proposition is obvious, we state it explicitly.

Proposition 5.61. Two subetale-sheaves (E, p, X) and (E’, p’, X) of an
etale-sheaf S are equal if and only if they have the same stalks; that is, E; =
El forallx € X.

Proof. This is true because E = | J, .y Ex.

We now introduce the sections of an etale-sheaf.
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Definition. If S = (E, p, X) is an etale-sheaf of abelian groups and U C X
is an open set, then a section over U is a continuous map o: U — E such
that po = ly; call o a global section if U = X. Define I'(@, §) = {0} and,
if U # @, define

'w,S) = {sectionso: U — E}.

Sections I'(U, S) may be viewed as describing local properties of a base
space X, while I'(X, &) describes the corresponding global properties.

Proposition 5.62. Let S = (E, p, X) be an etale-sheaf of abelian groups,
and let F = T'(1, S).

(1) F(U) is an abelian group for each open U C X.

(i) F =T(0, S) is a presheaf of abelian groups on X, called the sheaf of
sections of S.

(iii) The function z: X — E, defined by z(x) = 0, € Ey (called the zero
section), is a global section.

Proof.

(1) Let us show that F(U) # & for every openset U C X. f U = &,
then F(U) = {0}, by definition. If x € U, choose ¢ € E and a sheet S
containing e. Since p is an open map, p(S)NU is an open neighborhood
of x. Now (p|S)~': p(§) — S C E is a section; define o to be its
restriction to p(S) N U. The family of all such p(S) N U is an open
cover of U; since the maps og agree on overlaps, Proposition 5.58(v)
shows that they may be glued together to give a section in F(U).

Ifo,r € F(U), then (0, 7): x — (ox, Tx) is a continuous map U —
E+ E; composing with the continuous map (o x, Tx) = ox-+1tx shows
that 0 + 7: x +— ox + tx € F(U). That F(U) is an abelian group
now follows from inversion £ — E being continuous, for o € F(U)
implies —o € F(U).

(ii) If U C V are open sets, then the restriction 0 — o |U is the required
group homomorphism F (V) — F(U).

(iii) If U = X, then z is the identity element of the group F(X). e

If S is an etale-sheaf, then the presheaf 7 = I'(J, S) satisfies a special
property not shared by arbitrary presheaves.
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Proposition 5.63. Let S = (E, p, X) be an etale-sheaf with sheaf of sec-
tions I'((J, S), let U be an open set and let (U;);ic; be an open cover of it
U= Uie] Ui.

() Ifo,t e T(U,S)ando|U; = t|U; foralli € 1, then o = 7.

(i) If (o; € T'(U;, S))ier satisfies o;|(U; NUj) = oj|(U; NUj) for all
(i, j) € I x I, then there exists a unique o € I'(U, S) with o|U; = o
foralli e I.

Proof.  Propositions 5.58(iv) and 5.58(v). e

Definition. A presheaf {F, ,02; } of abelian groups on a space X satisfies the
equalizer conditon if

(i) (Uniqueness) for every open set U and open cover U = J;¢; U, if
0,7 € F(U) satisty o|U; = t|U; foralli € I, then 0 = 7 [we have
written o |U; instead of pg’_ (o)1,

(i) (Gluing) for every open set U and open cover U = | J;; U;, if 0; €
F(U;) satisty o; |(U; NU;) = o;[(U; NU;) for all i, j, then there exists
aunique o € F(U) witho|U; = o; foralli € I.

Proposition 5.63 shows that the sheaf of sections of an etale-sheaf satisfies
the equalizer condition, but there are presheaves that do not satisfy it.

Example 5.64. Let X = R? and, for each open U C R2, define
PWU)={f: U — R|f is constant};

if U C V, define p,‘]/: P(V) — P(U) to be the restriction map o — o |U. It
is easy to check that P is a presheaf of abelian groups over R?, but P does not
satisfy the equalizer condition. For example, let U = Uy U U,, where Uy, U,
are disjoint nonempty open sets. Define o1 € P(U;) by o1(u1) = 0 for all
uy € Uy, and define o7 € P(U3) by 02(uz) = 5 for all up € U;. The overlap
condition here is vacuous, because U; N Uy = &, but there is no constant
function o0 € P(U) witho|U; = o fori =1,2. <«

The equalizer condition can be restated in a more categorical way; see
Example 5.15.

Corollary 5.65. Let S be an etale-sheaf with sheaf of sections F = I'(, S).
Given a family (U;)icr of open subsets of X, write U = J,.; U; and Ui, =
UiNUj fori, j € I. Then there is an exact sequence

iel

0 FU) -5 [[Frwn 5 [ FWe:

iel (. j)yelxI



280 SETTING THE STAGE CH. 5

if o € F(U), the ith coordinate of a(o) is o|U;; if (0;) € []
(i, j)th coordinate of B((0;)) is 0;|U jy — 0j|Ug, j)-

F(Uy), the

iel

Proof.  Proposition 5.63(i) shows that « is an injection. Now ima C ker 3,
for Ba (o) has (i, j) coordinate o |(U;, jy—o|(i, j) = 0. The reverse inclusion
follows from Proposition 5.63(ii). e

It follows that P(U) is an equalizer of

o §
PW) S [[Pwn= ] PWaj.

iel B" i el xi

where a: o (0|U,‘), ,3/1 (U,') [ (CT,'|U(,',J')), and ﬂ”: (G,') [ ((7[|U(j,i)).
We now adopt another point of view, one that is preferred by every serious
user of sheaves.

Definition. A sheaf of abelian groups over a space X is a presheaf® F on
X that satisfies the equalizer condition. We shall always assume that F (&) =

{0}.

As with etale-sheaves, we may define sheaves with values in categories
other than Ab.

Corollary 5.66. If F is a sheaf of abelian groups over a space X, then every
family o = (0;) € [l;e; FWU;) for which o;|(U; N U;j) = o;|(U; N U;)
corresponds to a unique global section in F(X).

Proof.  Such an element o lies in ker 8, where 8 = B’ — B”, where 8, B’ are
the maps in the equalizer diagram above. e

Sheaves arise naturally when encoding local information (sheaf cohomol-
ogy, discussed in the next chapter, is the way to globalize this data), as we
shall see in the subsection on manifolds.

Definition. If {F, p(‘]/}, {G, rl‘]/} are sheaves over X, asheafmap ¢: F — G
is a natural transformation; that is, ¢ is a one-parameter family of homomor-
phisms ¢y : F(U) — G(U), indexed by the open sets U in X, such that there
is a commutative diagram whenever U C V:

Fv) 2 gw)

o Y

FU) =~ 9U).

oWe denote a sheaf by F because F is the initial letter of the French term faisceau.
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If U is the topology on X, then U/ is a set, and so I/ is a small category; as
in Example 1.19(iv), all presheaves form a category pSh(X, Ab), with mor-
phisms Hom(P, Q) = Nat(P, Q). We call morphisms P — Q presheaf
maps. It follows that if 7 and G are sheaves, then every presheaf map 7 — G
is a sheaf map.

Notation. Define Sh(X, Ab) to be the full subcategory of pSh(X, Ab) gen-
erated by all sheaves over a space X. We denote the Hom sets by

Homg (F, F') = Nat(F, F).

Example 5.67. For each open set U of a topological space X, define
F(U) = {continuous f: U — R}.

It is routine to see that F(U) is an abelian group under pointwise addition:
f+g:x+— f(x)+ g(x), and that F is a presheaf over X. For each x € X,
define an equivalence relation on ;5 F(U) by f ~ g if there is some open
set W containing x with f|W = g|W. The equivalence class of f, denoted
by [x, f], is called a germ at x. Define E, to be the family of all germs at
x, define £ = UxeX E,, and define p: E — X by p: [x, f] — x. In our
coming discussion of associated etale-sheaves, we will see how to topologize
E so that (E, p, X) is an etale-sheaf (called the sheaf of germs of continuous
Junctions over X). The stalks E of this etale-sheaf can be viewed as direct
limits: the family of all open sets U containing x is a directed partially ordered
set and, by Corollary 5.31, a germ [x, f] is just an element of the direct limit
lim _ F(U). Variations of this construction are the sheaves of germs of
differentiable functions and of germs of holomorphic functions. <

Example 5.67 generalizes; we shall see, in Theorem 5.68, that the stalks
of every etale-sheaf are direct limits.

We now construct an etale-sheaf from any presheaf P (we do not assume
that P is the sheaf of sections of an etale-sheaf). The next result shows that
there is no essential difference between sheaves and etale-sheaves.

Theorem 5.68.

(1) The sheaf of sections defines a functor I' . Shei(X, Ab) — pSh(X, Ab),
and imT" C Sh(X, Ab).

(i1) There are a functor ®: pSh(X, Ab) — Shq (X, Ab) (which is injective
on objects) and a natural transformation v: lpsnx,Ap) — I'® such
that ve: F — [T ®(F) is an isomorphism whenever F is a sheaf.
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The restriction ®| Sh(X, Ab) is an isomorphism of categories:

Sh(X, Ab) = Sh¢ (X, Ab).

Proof.

®

(ii)

Ifp: S — &, define '(p): T'(U,S) — I'(U,S’) by 0 > ¢o. The
reader may check that I' is a functor. Proposition 5.63 says that I'((d, S)
is a sheaf.

Given a presheaf P of abelian groups over a space X, we first construct
its associated etale-sheaf P = (E®, p®, X). For each x € X, the
index set consisting of all open neighborhoods U > x, partially ordered
by reverse inclusion, is a directed set. Define Ej;t = li—I>nU3x P(U) (gen-
eralizing the stalks of the sheaf of germs in Example 5.67).

PU)

E® = lim
x —>U>sx Vv
Py

P(V)
oy
PW)

Since the index set is directed, Corollary 5.31(iii) says that the elements
of ES' = H_r)nP(U) are equivalence classes [p)f/(o)], where U > x,
o € P(U), and pf: P(U) — E'is an insertion morphism of the di-
rect limit; moreover, [p! (0)1+[pY (/)] = [} pY (o) + oY 0 (o],
where W C U N U’ (thus, [pfcj (0)] generalizes [x, f]in Example 5.67).
Define E® = J,.y ES', and define a surjection p®': E®' — X by
[oY (0)] = x.

If U C X is a nonempty open set and o € P(U), define
(0. U) = {lp ()] : x € U}

We claim that (o, U) N (o', U’) either is empty or contains a subset
of the same form. If e € (o, U) N (¢’,U’), then e = [,ofcj(a)] =
[pg/(a’)], where x € U, 0 € P(U),andy € U’, o' € PWU).
But x = p[pY(0)] = pet[p;]/(a/)] = y,sothat x ¢ UNU.
By Lemma 5.30(ii), there is an open W C U N U’ with W 3 x and
[,ovl{,p)fv(a)] = [pvl{,/p;v(a/)]; call this element [7]; note that (z, W) C
(o,U) N (o', U, as desired. Equip E® with the topology’ generated

TThis is the coarsest topology on E that makes all sections continuous.
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by all (o, U); it follows that these sets form a base for the topology; that
is, every open set is a union of (o, U)s.

To see that (E®', p®', X) is a protosheaf, we must show that the surjec-
tion p° is a local homeomorphism. If e € E®, then e = [pY(0)] for
some x € X, where U is an open neighborhood of x and o € P(U). If
S = (o, U), then § is an open neighborhood of e, and it is routine to see
that p®!|S: S — U is a homeomorphism.

Now each stalk E¢' is an abelian group. To see that addition is continu-
ous, take (e, ') € E® + E®; thatis, e = [pY(0)] and ¢’ [,og/(a’)].
We may assume the representatives have been chosen so that o, 0’ €
P(U) for some U, so thate+¢' = [pV (0 +0)]. Let Vet = (o +0', V)
be a basic open neighborhood of e + ¢’ If : E®' + E®* — E is addi-
tion, then it is easy to see that if U = [(t, W) x (t/, W)]N(E®' + EY),
then a(U®) € V. Thus, « is continuous. As inversion E® — E°® is
also continuous, P = (E®, p®, X) is an etale-sheaf.

Define ®: pSh(X, Ab) — She (X, Ab) on objects by ®(P) = P =

(E®, p*, X). Note that ® is injective on objects, for if P # P’, then

{im,  PU)} # {lim ,_ P’(U)}, and so their direct limits are distinct
—>Usx —>U>sx

(of course, they may be isomorphic). Hence, Pt # P’ and &P #
®P’. To define ® on morphisms let ¢ : P — P> be a presheaf map,
and let PC‘ = (El ,pl Y X) fori = 1,2. For each x € X, ¢ induces
amorphlsm of direct systems {P1(U) : U > x} — {P(U) : U > x}

and, hence, a homomorphism ¢y : lim lim,_ PiU) — li_r)nUBX PiU);

that is, ¢y: (E{)x — (ES"). Finally, define ®(¢): E{' — ES' by
ex = @y(ey) forall e, € (Eet)x. We let the reader prove that ®(¢) is
an etale-map and that @ is a functor.

Given a presheaf {P, p;; vV} and an open subset U C X (thatis, U € L[)
a base for the topology of E' consists of all (cr U) = {[,ox (o)] :

U}. Define 0: U — E® by o®(x) = [pY(0)]; Exercise 5. 39(1)
on page 301 now says that o € T'(U, P*). Define vy: P(U) —
(U, P by o > o If V is an open set containing U, then it easy to
see that vy = vy ,02; , so that the family {vy : U € U} gives a presheaf
map vp: P — I'(LJ, P®). We let the reader check that v = (vy) is a
natural transformation lpgp(x,Ap) — I'®.

If F is a sheaf, we show that vr: F — I'({J, F®) is an isomorphism
using Exercise 5.41 on page 301. It suffices to prove, for each open U,
that vy : F(U) — (U, F), givenby 0 — o, is a bijection. To see
that vy is injective suppose that o, 7 € F(U) and 0 = 1. For each
x € U, wehave p; Uo) = Py U(7); that is, there is an open neighborhood
W, of x with o|W, = t|W,. The family of all such W, is an open
cover of U, and so Proposition 5.58(iv) gives o = 7. To see that vy is
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surjective, let B € T'(U, F*). For each x € U, there is a basic open
set (U, o) containing B(x), where o € F(U,). The gluing condition,
Proposition 5.58(v), shows that there is 0 € F(U) with o|U, = oy
for all x € U, and another application of Proposition 5.58(iv) gives
B = o Thus, vy is a bijection.

(iii) This follows easily from parts (i) and (ii). e

The stalks of the etale-sheaf of germs in Example 5.67 are direct limits,
as are the stalks of P°'; we now define the stalks of an arbitrary presheaf.

Definition. If P is a presheaf on a space X, then the stalk at x € X is

Py = h—r>nU3x PW).

For each x € X, the presheaf map ¢: P — Q induces a morphism
of direct systems {P(U) : U > x} — {Q(U) : U > x}, which, in turn,
gives the homomorphism ¢ : h_r)nUa)C PU) — h_r)nUBx Q(U) defined by
¢x: [0] — [@o], where 0 € P(U) and x € U. Exercise 5.33 on page 272
shows that lim is a functor Dir(/, Ab) — Ab, where Dir(/, Ab) is the cat-

egory of direct systems of abelian groups over I = {U > x}. Hence, if

P -2 Q L ‘R are presheaf maps, then (V@) = ¥, ¢x. See Exercise 5.45
on page 302 for a description of vy, where v: P — ['(0J, P%) is the natural
map in Theorem 5.68.

Lemma 5.69. Let ¢, : P — F be presheaf maps, where P is a presheaf
and F is a sheaf. If ¢, ¥ agree on stalks, that is, ¢, = Y for all x € X, then

p=1.

Proof. 'We must show that ¢y = ¥y for all open U. Given U, choose x € U
and e, = [0x] € Py, where o, € P(U,) for some open U, > x with U, C U.
By hypothesis,

[g0:] = go (o)) = Y (lox]) = [Yoy ] in lim,_ F(U).

By the definition of equality in direct limits, there are open neighborhoods W
of x with @o,|W, = ¥o,|W,, and (W,),cy is an open cover of U. Since the
equalizer condition holds for the sheaf F, the restrictions determine a unique
section; that is, po, = Yo,. Hence, oy =Yy andgo =¢. e

Theorem 5.70. Let P = {P(U), ,025 } be a presheaf of abelian groups over
a space X, let Pt = (E®, p, X) be its associated etale-sheaf, and let
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P* = (O, P be the sheaf of sections of P. There exists a presheaf
map v: P — P* that solves the following universal mapping problem:

for every presheaf map ¢: P — F, where F is a sheaf over X, there exists a
unique sheaf map ¢: P* — F with gv = g.

Proof. Applying ® gives an etale-map ®(¢): ®(P) — D (F), and applying
" gives a sheaf map '®(P) — ['®(F). But P* = ['®(P), by definition,
while vr: F — ['®(F) is a natural isomorphism, because F is a sheaf.
Therefore, the diagram commutes if we define ¢ = 1)_7__-1 ro(ep).
By Lemma 5.69, it suffices to see that ¢, = v, for all x € X. But
Pi=1im __ P),
—> Usx

PU) x Py =lim P(U)

k < 7 @y

Fy =lim FU),
—

and the universal property of direct limit gives a unique map making the dia-
gram commute. e

Definition. If P is a presheaf of abelian groups, then its sheafification is the
sheaf P* = I'(J, P*°Y), where I is the sheaf of sections of P, the associated
etale-sheaf of P.

The construction of the associated etale-sheaf in Theorem 5.68 shows that
a presheaf P and its sheafification P* have the same stalks.

Example 5.71. Let A be an abelian group and let X be a topological space.
The constant presheaf at A over X is defined on a nonempty open set U € X
by

PWU) ={f: U — A|f is constant};

define P(©@) = {0} and, if U C V, define p[‘;: PV)— PWU)by f— fIU
[an equivalent description of P has P(U) = A for every nonempty open U
and 101‘1/ = 14]. As in Example 5.64, P is not a sheaf, for we may not be able
to glue sections defined on disjoint open sets.

Let the protosheaf of P be (E, p, X). Now the stalk E, = A, and so the
underlying set of E is X x A; what is the topology on X x A making P an
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etale-sheaf? As in the proof of Theorem 5.68, a base for open sets consists of
all the subsets of the form

(LU =1{pY (H]:x e UY;

here, f: U — A is a constant function; say, f(x) = a for all x € U. Thus,
(f,U) = U x {a}. Since stalks always have the discrete topology, it follows
that X x A has the product topology. Since there may be nonconstant functions
f:U — X x Awith pf = 1y (see Example 5.64), the constant presheaf P
is not a sheaf.

Define the constant sheaf at A to be the sheafification P* of the constant
presheaf P. Recall that a function f: X — Y between spaces is locally
constant if each x € X has an open neighborhood U, with f|U, constant.
If Y is discrete, then every continuous f: X — Y is locally constant; since
{f(x)} is open, we may take U, = f~'({f(x)}). The reader may check that
the constant sheaf P* has sections

PWU)={f: U — A|f islocally constant}.

It follows that P £ P*. <«

Here is an example showing that both protosheaf and presheaf views of a
sheaf are useful.

Example 5.72.

(i) Let A be an abelian group, X a topological space, and x € X. Define a
presheaf by

A ifxeU,

x:A(U) =
+AU) {0} otherwise.
If U C V, then the restriction map p[‘]/ is either 14 or 0. It is easy to
check that x, A is a sheaf; it is called a skyscraper sheaf . Its name arises
because all the stalks of x, A are {0} except (x,A),, which is A.

(ii) Let X be the unit circle, which we view as {z € C : |z|] = 1}, and let
p: X — X bedefined by p: z > z2. If we set E = X, then we have
defined a protosheaf S = (E, p, X). Now S is an etale-sheaf with all
stalks isomorphic to I, which we call the double cover. An interesting
feature of the sheaf of sections I'((J, S) is that it has the same stalks as
the constant sheaf at I, yet the two sheaves are not isomorphic. The
nonisomorphism merely reflects the obvious fact that different spaces
can be the same locally. <«
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Fig. 5.2 Double cover.

Definition. Let P’ and P be presheaves of abelian groups on a topological
space X such that P'(U) € P(U) for every open set U in X; that is, there
are inclusions ty: P'(U) — P(U). Then P’ is a subpresheaf of P if the
inclusion .: P’ — P is a presheaf map..

If F is a sheaf, then P’ is a subsheaf of F if P’ is a subpresheaf that is
also a sheaf.

Example 5.73.
(i) The zero sheaf [see Example 5.60(i)] is a subsheaf of every sheaf.

(i1) Let F be the sheaf of germs of continuous functions on an n-manifold X
[see Example 5.67], let ' be the sheaf of germs of differentiable func-
tions on X, and let 7" be the sheaf of germs of holomorphic functions
on X. Then F” is a subsheaf of F’, and F’ is a subsheaf of F.

(iii) Let F be the sheaf of germs of continuous functions on a space X.
Define G by setting G(U) = F(U) for all open sets U and by setting
restrictions wl‘; to be identically 0. Then G is a presheaf, but G is not a
subpresheaf of F (for the inclusion is not a presheaf map). <«

It is clear that subpresheaves F and F' of a presheaf G are equal if and
only if F(U) = F'(U) for all open U. This simplifies for sheaves.

Proposition 5.74.

(1) If @: pSh(X, Ab) — Sh¢ (X, Ab) is the functor in Theorem 5.68, and
if F is a subsheaf of a sheaf G, then ®F is a subetale-sheaf of ®G.

(1) If all the stalks of a sheaf F are {0}, then F is the zero sheaf.

(iii) If F and F' are subsheaves of a sheaf G, then F = F' if and only if
they have the same stalks; that is, F, = F, for all x € X.
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Remark. Example 5.81 shows that part (ii) is false for presheaves, and so
the hypothesis in part (iii) that 7 and F’ both be subsheaves of a sheaf G is
necessary. <«

Proof.

(1) If t: F — G is the inclusion, then ®(¢): ®F — DF is an etale-map.
Since each (yy: F(U) — G(U) is an injection, the induced map on
stalks ¢, : F, — G, is an injection (Proposition 5.33 applies because
{open W C U : W > x} is a directed set).

(i) The construction in Theorem 5.68 shows, for any presheaf P, that the
stalks of P and I" (O, PY) are the same. It follows that if all the stalks of
a sheaf F are {0}, then I"((J, F°!) are {0}. But the restriction of the func-
tor ®: pSh(X, Ab) — Sh¢ (X, Ab) to Sh(X, Ab) is an isomorphism,
and so @ (F) = ®(0) is the zero sheaf.

(iii) By Proposition 5.61, if 7 and F” have the same stalks, then ®F = ®F’.
But @ is injective on objects, and so F = F. e

5.4.1 Manifolds

In his book Differential Geometry: Cartan’s Generalization of Klein’s Erlan-
gen Program (Springer-Verlag, New York, 1997, p. 52), R. W. Sharpe writes,

Let us begin with a rough and ready description of p-forms for
p < 2. The O-forms (with values in a finite-dimensional vector
space V) on a manifold M are just the V -valued functions on M.
The 1-forms generalize the derivatives of a function on M. The
2-forms are used as a way of formalizing the necessary conditions
on a 1-form for it to be the derivative of a function.

When we first learn Calculus, it is natural for us to regard differential
forms dx as being very small and, hence, to regard (dx)> = dxdx as being
neglible. Taking this observation seriously leads to Grassmann algebras.

Definition. Let V,, be an n-dimensional vector space over R, and label a

basis of V,, as dxy, ..., dx,. The Grassmann algebra8 G(V,) is the (asso-
ciative) R-algebra with generators dxi, ..., dx, and relations v2 = 0 for all
veV,.

SThis is a special case of an exterior algebra. The product of two elements is usually
denoted by dx A dy instead of by dxdy, and the maps d” : GP(Vy,) — GPTL(V,) defined
below are special cases of exterior derivatives.
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Of course, (dx;)? = 0in G(V,); note that (dx; + a’x]')2 = 0 gives 0 =
(dx)? + dxidx; + dx;dx; + (dx;)* = dx;dx; + dx;dx;, so that

dxjdx; = —dxdx;.

In particular, products of dx;s can be rewritten in the form +dx; dx;, - - - dx; e
where 1 <ij <ip <--- < i, < n.Forexample, dx3dxdx; = —dx1dx3dx;
=dxidxydx3. If I = (iy, ..., ip), write

dX1 = dx,-ldxiz cee dx,-p.
We can prove that G(V,,) is a graded algebra:

G(Va) = P G (V).

r=0

where G%(V,)) = R and GP(V,,), for p > 1, is the vector space over R gener-
ated by all dx; dx;, - - - dx;,. It follows that GP(V,) = {0} if p > n, because
any product of dx;s having more than n factors must have some dx; repeated.
In fact, dim(G?(V,)) = (Z) with basis all dx; with I = (i1, ...,i,) and
1 <iy <ip <--- <ip =< n(Rotman, Advanced Modern Algebra, p. 749).

Definition. A euclidean m-chart is an ordered pair (U, ¢), where U is a
topological space, called a coordinate neighborhood, and ¢: U — R" is a
homeomorphism. A function f: U — R is smooth if fo~': o(U) — Ris
smooth (if V' € R is open, then a function f: V — R is smooth if all its
mixed partials exist). All these smooth functions form a commutative ring,

CU, o).

Definition. An m-manifold is a Hausdorff space X such that every x € X
has an open neighborhood homeomorphic to R".

If U, is an open neighborhood of X and ¢,: Uy — R™ is a homeomor-
phism, then (U,, @) is an m-chart.

Definition. Given a euclidean m-chart (U, ¢), define
QP(U, p) =CWU, ¢) Qr G? (V).

Now QO(U, ¢) = C(U, ¢) and, when p > 1, QP (U, ¢) is the free C(U, ¢)-
module with basis all dx; with I = (i1,...,ip)and 1 < i} <ip < -+ <
ip < m. The elements € QP (U, ¢) are called real p-forms; each has
a unique expression w = Y, frdx;, where f; € C(U, ¢) (we write dx;
instead of 1 ® dx; and, more generally, f; dx; instead of f7 ® dxj).
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Definition. If (U, ¢) is a euclidean chart, then the de Rham complex
Q°(U, ¢) is the sequence

0 1
0— QU 0) -5 QU 0) L QR @) — -,

where d?: QP (U, ¢) — QPTYU, @) is defined® as follows:
if feQU,¢)=C,thendf = Z—dx,,

ifw=>" frdx; € Q"(U, ¢), then d”(w) = Z(dof,)dx,.
1 1

The de Rham complex is a complex; that is, d”?T'd? = 0; the proof
depends on the fact that the mixed partials of a smooth function are equal (see
Bott-Tu, Differential Forms in Algebraic Topology, p. 15).

Example 5.75. If U C R3, then the de Rham complex is just the familiar
one of Advanced Calculus:'?

grad curl

0 W) &S Q') ™ Q) ™ Ry - 0. <«

As in Advanced Calculus, we say that a p-form w is closed if d”w = 0,
and it is exact if @ = dP~'¢ for some (p — 1)-form ¢. Let ZP (U, ¢) denote
the subspace of Q7 (U, ¢) comprised of all closed p-forms, and let B? (U, ¢)
denote the subspace of Q7 (U, ¢) comprised of all exact p-forms. Since
dPdP~! = 0, every exact p-form is closed; that is, B (U, ¢) € ZP(U, ¢),
and we define

HP(Q*(U, ) = Z"(U, )/ B"(U, ¢).

The cohomology groups H? (2°(U, ¢)) of the de Rham complex are isomor-
phic to the singular cohomology groups H” (U, R).

We shall see, in Example 5.77, that sheaves will allow us to generalize
this discussion from charts to manifolds.

The following general construction is useful.

9Strictly speaking, we shlould write B(f(p_l)/axi instead of df/dx;.
10Recall: gradf W oax + ?f dy + 3L dz cul(fidx + fody + f3dz) =

(% - m) dydz— di - ?,—’;j) dxdz +(3f2 - 3f1) dxdy; div(fy dydz — frdxdz +
f3dxdy) = (%f ! 3%3) dxdydz.
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Definition. Let F be a sheaf of abelian groups over X, and let U be an open
subset of X. If V. C U is an open set, define a presheaf F|U: V — F(V). It
is easy to see that F|U is a sheaf; it is called the restriction sheaf.

If F is a sheaf over a space X and U € X is open, we may say “F over
U” instead of “the restriction sheaf F|U.”

Here is the geometric picture of the restriction F|U. If F*' = (E, p, X)
is the etale-sheaf of F, then the etale-sheaf of F|U is (E’, p|E’, U), where
E' = p~N(U).

Given a euclidean m-chart (U, ¢), we have seen how to define the de
Rham complex Q27 (U, ¢). We can generalize this construction from m-charts
to smooth manifolds, which are the most interesting manifolds for Geometry
and Analysis.

Definition. Let X be an m-manifold. An atlas is a family of m-charts
(Ui, ¢i))ier withU = (U;)ies an open cover of X.

Let ((U;, ¢i))ics be an atlas of an m-manifold. If p € U;, then ¢; equips
p with coordinates, namely, ¢; (p). Write U;; = U; N U;. If U;; # @, then
every p € U;; has two sets of coordinates: ¢; (p) and ¢;(p).

Definition. If ((U;, ¢;))ics is an atlas, then its transition functions are
hij = %‘Gﬂj_l 29 (Uij) — ¢i(Uij).

Transition functions compare the two sets of coordinates of p € U;;. If
15+ Ym) = @j(p) and (x1, ..., Xm) = @i(p), then hjj: (y1, ..., ym) =
11 e Ym)s oo s X (V15 -+ -, Ym)). If V and W are open subsets of R
and h: V — W, then

h: (YI,,ym)H (xl()’la,)’m)a7xm(yl7a)’m))

Call h smooth if all its mixed partials exist; that is, for each 1 < g < m, the
coordinate function (y1, ..., ym) = X4(V1, ..., ym) is smooth.

Definition. A smooth m-manifold is an m-manifold having an atlas whose
transition functions are smooth.

The next proposition will allow us to define (global) smooth functions
on X.

Proposition 5.76 (Gluing Lemma). LetU = (U;);c; be an open cover of
a space X. For eachi € I, let F; be a sheaf of abelian groups over U; and,
foreachi, j € I, let there be sheaf isomorphisms 0;;: F;|U;j — F;|U;j such
that
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) 6:i = 17u;;
(ii) foralli, j, k € I, the restrictions to U; N\ U; N Uy, satisfy

ik = 0j0jk.

Then there exist a unique sheaf F over X and isomorphisms n;: F|U; — F;
such that n; n;l = 0;j over Ujj forall i, j.

Proof. Uniqueness of F (to isomorphism) is left to the reader. For existence,
note that if V' C X is open, then

V=VﬂX:VﬂUU,-=U(VﬂUl~).

iel iel

Define F(V) = h_r)n Fi(V N U;). Itis routine to check that the presheaf F is
a sheaf that satisfies the stated properties. e

Example 5.77. Let ((U;, ¢;))ic; be an atlas of an m-manifold X. For each
i € I, define a commutative ring over U; by setting, for each open W; C U;,

Fi(W) ={fIW; : f € C(U;, ¢},

where C(U;, ¢;) is the commutative ring of all smooth functions on (U;, ¢;).
If W/ C W; are open, define F;(W;) — F;(W/) to be “honest” restriction:
fIW; = fIW/. It is easy to see that F; is a sheaf of commutative rings
over U;. The reader can define sheaf maps 6;; that satisfy the hypotheses of
the Gluing Lemma, Proposition 5.76, yielding a sheaf C over X. In light of
Corollary 5.66, define a smooth function on X to be a global section; that
is, define C(X) = I'(X, C). With this definition, the smooth functions on X
form a commutative ring. Let (E, p, X) be the etale-sheaf corresponding to
C. Locally, smooth functions have values in R™; however, smooth functions
on X correspond to global sections; that is, they take values in E.

A similar construction allows us to define (global) p-forms on X, and
the de Rham complex can be defined for manifolds (see Bott—Tu, Differential
Forms in Algebraic Topology, for more details). <«

Here are two important constructions, called change of base (but which
we will not be using in the text); the first generalizes the construction of the
restriction sheaf just given.

(i) Given a continuous f: Y — X, there is a change of base construction,
called inverse image, that constructs a sheaf over Y from a sheaf over
X. Itis simplest to define inverse image in terms of etale-sheaves. If
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P is a presheaf, then P = (E, p, X) is an etale-sheaf. Construct the
pullback (in Top)

E

l”

I
I
A
Y*Jc)X.

E~~~

4

p

Then &' = (E’, p/,Y) is an etale-sheaf over Y, and define f*P =
['(d, 8’). There is a functor f*: pSh(X, Ab) — pSh(Y, Ab), called
inverse image, with f*: P — ['(0J, P*). For example, if f: U — X
is the inclusion of an open subset, then f*F is the restriction sheaf
F|U.

(i) Given a continuous f: ¥ — X, the second change of base construction
constructs a presheaf over X from a presheaf over Y. If P is a presheaf
over Y, define the direct image f.P by fiP(V) = P(f~'V) for every

—1
open subset V C X and, if W C V, then p‘v/v = p;_l“y. Then f,P
is a presheaf over X; if P is also a sheaf, then f,P is a sheaf as well.
Moreover, f,: pSh(Y; Ab) — pSh(X, Ab) is a functor.
As an example, leti: ¥ — X be the inclusion of a subspace, and let F
be a sheaf of abelian groups over Y. If Y is closed, then we can prove
(see Tennison, Sheaf Theory, p. 64) that the stalks of i, F are

X f Y7
o
{0} ifxe¢Y.

If Y is an open subset, then the stalks of i, are {0} outside Y, the
closure of Y.

Theorem. [f f: X — Y is continuous and P is a presheaf over Y, then
[*P is a sheaf over X. Moreover, there is a presheaf map v: P — fy f*P
solving the universal mapping problem (where F is a sheaf)

P —=fuf*P
|
|
v Y
F.
Proof. Tennison, Sheaf Theory, p. 60. e

This generalizes Theorem 5.70, for the sheafification of a presheaf P
(which we constructed using etale-sheaves) turns out to be P* = f, f*P,
where f = 1x: X — X.
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Corollary. Iff: X — Y is continuous, then (f*, fy) is an adjoint pair of
functors pSh(Y, Ab) — pSh(X, Ab).

Proof.  Tennison, Sheaf Theory, p. 61. e

The reader should note that P > f f*P is the unit of this adjoint pair of
functors.

5.4.2 Sheaf Constructions

We now show that many constructions made for abelian groups can be gen-
eralized to presheaves and to sheaves. It turns out that finite products and
finite coproducts exist in the categories pSh(X, Ab) and Sh(X, Ab) and, as
in gkMod, they coincide.

Proposition 5.78. Let P and Q be presheaves of abelian groups on a space X.
(1) If, for every open U C X, we define
(P& QW) =PWU)® ),
then P & Q is both a product and a coproduct in pSh(X, Ab).

(i) If both P and Q are sheaves, then P & Q is a sheaf, and it is both a
product and a coproduct in Sh(X, Ab).

Proof.

(i) Itiseasy to generalize Proposition 2.20(iii) from modules to presheaves;
PdQisa coproduct if and only if there are projection and injec-

tion presheaf maps P = < PoQ _’ Q satistying the equations pi =

Ip,qj = 1g,pj = 0,qi = 0, and ip+ jg = lpgpg. f X isa
presheaf and «: P — X and B: Q — X are presheaf maps, define
0: PdQ — XbyOd = ai + Bj. We conclude that P & Q is a
coproduct.

// N // ™~

PeQ-"-->x PeQ<'---x

A NP

Similarly, P & Q is a product, for if s: X — Pandr: X — Q are
presheaf maps, define 0’': X — P @ Qby 0 =is+1j.
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(i) If P and Q are sheaves, then the equalizer condition holds for each,
from which it follows that there is an exact sequence of abelian groups

/8,
0> PooW) =>[[Peow) = [] Pe9Wu.

iel (i,j)elxI

Thus, P @ Q is a sheaf. That P @ Q is both a product and a coproduct
in pSh implies that this also holds in the subcategory Sh (for there are
more diagrams to complete in the large category).!! e

Remark. If P and Q are presheaves (or sheaves), we call P @ Q their direct
sum. Note that the stalks of P ® Qare (P ® Q)y =P ® Q.. <«

Definition. If (F;);c; is a family of presheaves of abelian groups over a
space X with restriction maps p;, define the direct product presheaf P =
[1;c; Fi as follows. For every open U C X, define

PW) =[x W)
iel
if U € V are open, define the restriction P(V) — P(U) coordinatewise:

(si) = (pi(si)).

Proposition 5.79. If (F;)ic; is a family of sheaves of abelian groups over
a space X, then [[;c; Fi is a sheaf, and it is a categorical direct product in
Sh(X, Ab).

Proof. The straightforward checking is left to the reader. e

We want to define exact sequences of sheaves; defining the kernel of a
presheaf map is straightforward.

Definition. The kernel of a presheaf map ¢: P — Q is defined by

(kerp)(U) = ker(gy).

Itis easy to check that ker ¢ is a subpresheaf of P. Note that the inclusions
ty: ker(py) — P constitute a presheaf map ¢: kerop — P; we call ¢ the
inclusion.

HHowever, a product in a subcategory need not be a product in a larger category. For
example, let 7 be the category of all torsion abelian groups. If (Gp),>1 is a family of
torsion groups, then 7 ([ ],,~.; Gy ) is the categorical direct product in 7, while [],~.; G, is
the categorical direct product in Ab.
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Proposition 5.80. Let {P, p[‘]/ }and {Q, t/r[‘]/ } be presheaves over a space X,
and let 9. P — Q be a presheaf map.

(1) The inclusion: ker ¢ — P is a categorical kernel of ¢ in pSh(X, Ab);
that is, t solves the universal mapping problem

I
7 X
% J
kerp —P —— Q.

4

(ii) If P and Q are sheaves, then Kero is a sheaf, and the sheaf map
t: kerp — P is a categorical kernel of ¢ in Sh(X, Ab).

(iii) If'P and Q are sheaves, then (ker ), = ker(py).
Proof.

(i) For each U, there is a unique map 0y : X(U) — (ker¢)(U) for each
U, because (ker ¢)(U) = ker(¢y) solves the universal problem in Ab,
as in Example 5.12(iii).

XU)
|

Y
(ker 9)(U) ——= P(U) ——= Q(U)

The reader may check that 6: X — ker ¢ is a presheaf map.

(i1) It suffices to prove that ker ¢ is a sheaf. Assume that (U;);<; is an open
cover of an open U C X. If 0,0’ € F(U) agree on overlaps [i.e.,

pL(//,-imUj (o) = pL(/],-imUj (o) for all i, j], then 0 = o, because P is a
sheaf. For the gluing axiom, suppose that o; € ker ¢y, for all i satisfy
the compatibility condition pLL//;mUj (o) = ngn U; (o)) foralli, j. Since
‘P is a sheaf, there is 0 € P(U) with 'Oll]]i (0) = o; for all i. Now

ViU (o) = gu,py (0) = gy, (07) =0,

because o; € kergy,. Since Q is a sheaf, py (o) = O; thatis, o €
ker ¢y. Therefore, o € (ker ¢)(U), and so ker ¢ is a sheaf.

(iii) Since (ker@)(U) = ker(py) € P(U) for all U, we have (kerp), =
H_r)nker(goy) - li_r)nP(U), because {U : U > x} is directed. Now

O - h_r)nUBx PWU) — li—r>nst Q(U) isdefined by ¢y : [oy] — [pvov],
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and so ker(¢,) C li_r)nUax P(U). Since both (ker¢), and ker(¢p,) are
subsets of h—r>nst P(U), it makes sense to assert their equality. If
[oy] € ker(py)x = li_r)nker((pU), then pyoy = O for all U; hence,
limker(py) C ker(py). For the reverse inclusion, if [oy] € ker(gy),
then [pyoy] = 0 in h_r)nQ(U), and so there is some W C U with
oW (,o‘a],ay) = 0, by Lemma 5.30(ii). Hence, pyoy = 0forall V C W,
and so [oy] € li_r)nker(goU). °

Defining the image of a presheaf map and, hence, defining exactness, is
straightforward for presheaves. If ¢: P — Q is a presheaf map, define im ¢
by (im ¢)(U) = im ¢y ; note that im ¢ is a subpresheaf of Q.

Definition. A sequence of presheaves P’ 4 p L pris exact in

pSh(X, Ab) if
im ¢ = ker ¢.

It is easy to see that P’ o i) P” is an exact sequence of presheaves

if and only if P'(U) LN P) Yy, P”(U) is an exact sequence of abelian
groups for every open set U.

If P’ is a subpresheaf of a presheaf P, define the quotient presheaf by
(P/PHY(U) = PU)/P'(U). It is easy to see that P/P’ is a presheaf and
that the natural map 7 : P — P/P’ [with ny: P(U) — PU)/P'(U)]is a
presheaf map. If ¢: P — Q is a presheaf map, then Q/im ¢ is a cokernel.
The First Isomorphism Theorem, P/ ker ¢ = im ¢, holds as well.

Example 5.81. If F is a sheaf over a space X with every stalk {0}, then F is
the zero sheaf. However, this is not true for presheaves. Let P be a presheaf
that is not a sheaf. There is an exact sequence of presheaves

P P* = PP — 0,

where P* is the sheafification of P. Foreach x € X, theindex set{U : U > x}
is a directed set, and so there is an exact sequence

Py =5 PE— (P*/P)y — O,

where v, is the identity on Py. Thus, (P*/P), = {0} forallx € X. <«

Alas, the image of a sheaf map need not be a sheaf.

Example 5.82. Let O be the sheaf of germs of complex holomorphic func-
tions on the punctured plane X = C — {0}; thus,

O(U) = {holomorphic f: U — C}.



298 SETTING THE STAGE CH. 5

Let O™ be the sheaf on X defined by O*(U) = {holomorphic f: U — C*};
thatis, f(z) # Oforallz € U. If ¢: O — (O*is the sheaf map defined by
ou: f e2"if then ker ¢ = Z, the constant sheaf at Z on X, and, for each
U, there is an exact sequence of presheaves

07— 02 050,

We claim that im ¢ is not a sheaf. Let (U;);<y be an open cover of X by disks.
Define f; € O*(U;) by fi(z) = z forall z € U;. Of course, this family agrees
on overlaps, and the unique global section they determine is f = 1x. Now
each f; € ¢(U,;), for there is a logarithm ¢; (z) defined on U; with eli® = 7
(because the disk U; is simply connected). However, it is well-known that
there is no complex holomorphic logarithm defined on all of X, and so 1y is
not a global section of im ¢. Therefore, im ¢ is not a sheaf. <«

Example 5.82 shows that we must be more careful with sheaves than with
presheaves, for the image of a sheaf map P — Q need not be a sheaf, even
when both P and Q are sheaves. There is also a problem with quotients:
if 7' is a subsheaf of a sheaf F, then the quotient F/F' is a presheaf that
need not be a sheaf. If ¢: F — G is a sheaf map between sheaves, then the
First Isomorphism Theorem for presheaves gives an isomorphism F/ ker ¢ =
im ¢. Hence, if im ¢ is not a sheaf, then the quotient presheaf / ker ¢ is not
a sheaf either. The definition of quotient sheaf is given in Exercise 5.49 on
page 302.

How should an image sheaf be defined? In Ab, the cokernel of a map
f: A — Bis B/im f; thatis, then im f = kermw, where 7: B — B/im f
is the natural map. Thus,

im(A &> B) = ker(coker(A <> B)).

This remark is interesting because coker f can be defined as a solution to a
universal mapping problem in Ab that does not mention im f.

A*f>BJ>cokerf
h I
|6
0 v
X

Note that the natural map w: B — coker f is needed to pose the universal
problem. In fact, it is more convenient to think of 7 as the cokernel rather
than B/im f. We could call 7 the categorical cokernel to avoid confusion.

We now define the cokernel of a sheaf map. Recall that Hom(F, X)) is an
abelian group whose identity element is the sheaf map 0: F — X.
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Definition. A cokernel of a sheaf map ¢: F — Gisasheafmapn: G — C
with m¢ = 0, where C € obj(Sh), that solves the universal mapping problem:
for every sheaf map n: G — X with ng = 0, there exists a unique sheaf map
0:C— X withfr =n.

F—>G—">¢C

Y,

X

Proposition 5.83. If F, G are sheaves and ¢ : F — G is a sheaf map, then
coker ¢ exists in Sh(X, Ab); it is the composite G — G/im¢ — (G/imp)*,
where (G/im @)* is the sheafification of G/im g.

Proof. Consider the diagram of presheaves:

fﬁg\ T (G/imp)*
1o / |
|
G/img 0 :9
0 \ v
X

Since ngp = 0, there are presheaf maps 6y: G/im¢p — X and no: G —
G/im g with n = 0Ogno (because G/im ¢ is a cokernel in pSh). There is a
presheaf map v: G/imgp — (G/img)*, and we define 7: G — (G/imgp)*
by m = vng. By Theorem 5.70, there is a sheaf map 6: (G/im¢p)* — X
making the diagram commute. Uniqueness of the sheaf map 0 now follows
from Lemma 5.69. e

Proposition 5.84. If F, G are sheaves and ¢ : F — G is a sheaf map, then
kero = 0 if and only if ¢, = 0 for all x € X, and coker ¢ = 0 if and only if
img, = G, forall x € X.

Proof. 1If kerp = 0, then (ker¢), = {0} for all x, for Proposition 5.74(ii)
says that sheaves are zero if and only if all their stalks are zero. But (ker ¢), =
ker(gy); that is, ¢, = 0 for all x. Conversely, if ¢, = 0 for all x € X,
then (ker @), = O for all x, and so ker ¢ = 0, by Proposition 5.74(ii). This
argument can be repeated for coker ¢, for (coker ¢), = coker(¢,). e

Definition. If ¢: F — G is a sheaf map, then

img = ker(G . coker ®).
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We are abusing notation: we have defined a sheaf, namely, coker ¢, that is
equal to (G/img)*. By definition, the cokernel of ¢ is a morphism (not a
sheaf!), namely, the sheaf map 7: G — (G/im¢)*. Thus, the definition says
that im¢ = ker .

Solutions to universal mapping problems, when they exist, are unique
only to (unique!) isomorphism. However, since we are working in Sh(X, Ab)
and not in some abstract category, we may choose, once and for all, a spe-
cific solution, namely, the composite G — G/im¢ — (G/im¢)*. Thus,
we may assume that (coker ¢), = coker(¢y). More important for us is the
consequence:

(img)y = (kerm), = ker(my) = im(¢y).

Definition. A sequence F’ 2 F Y, F"" of sheaves of abelian groups

over a space X is exact if
im¢ = ker ¢.

Theorem 5.85. A sequence F’ o F BN F" of sheaves of abelian groups
over a space X is exact in Sh(X, Ab) if and only if the sequence of stalks
REN RNy

f/

X
is exact in Ab for all x € X.

Proof.  If the sequence of sheaves is exact, then ker ¢ = im ¢ and (ker ¢), =
(imy), for all x € X. But (kerg), = ker(¢,) and (imv), = im(yy), and
so the sequence of stalks is exact.

If the sequences of stalks are exact (for each x € X), then Proposition 5.74
gives im ¢ = ker v, for both im ¢ and ker v are subsheaves of F, and so the
sequence of sheaves is exact. e

Corollary 5.86. If F, G are sheaves and ¢: F — G is a sheaf map, then
there is an exact sequence
0>K-5>7r-5g-5K -0
with « = ker ¢ and v = coker g.
Proof.  This follows at once from Theorem 5.85. e

Thus, exactness of a sequence of sheaves means exactness at each stalk. In
contrast, exactness of a sequence of presheaves means exactness at each open
set. If a sequence of sheaves F' — F — F” is exactin pSh(X, Ab), then it is
also exact in Sh(X, Ab), for Proposition 5.33 says that exactness of 7' (U) —
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" L ) ,
FU) — F'(U) for all open U implies exactness of li‘l)anxf u) —

lim  FU) — lim
—

—> U>sx

Uaxf”(U) for all x € X; thatis, 7} — F, — F/

is exact for all x € X. We have seen that the converse is false.

Exercises

*5.38 ()

Prove that the zero sheaf is a zero object in Sh(X, Ab) and
in pSh(X, Ab).

(ii) Prove that Hom(P, P’) is an additive abelian group when

P, P’ are presheaves or when P, P’ are sheaves.

(iii) The distributive laws hold: given presheaf maps

o ¢ B
X—P=9—),
1

where & and ) are presheaves over a space X, prove that

Blo+v¥) =B+ BY and (¢ +)a=gpa+ya.

*5.39 Let (E, p, X) be an etale-sheaf, and let F be its sheaf of sections.

()

Prove that a subset G C E is a sheet if and only if G =
o (U) for some open U C X and o € F(U).

(ii) Prove that G C E is a sheet if and only if G is an open

subset of E and p|G is a homeomorphism.

(iii) If G = o(U) and H = t(V) are sheets, where o € F(U)

and t € F(V), prove that G N H is a sheet.

(iv) If o € F(U), prove that

supp(o) ={x e X :0(x) #0, € E,}

is a closed subset of X.

Hint. Consider o (U) N z(U), where z € F(U) is the zero
section.

5.40 Prove that an etale-map ¢: (E, p, X) — (E’, p/, X) is an isomor-
phism in She( (X, Ab) if and only if ¢: E — E’ is a homeomor-

phism.

*5.41 Let ¢: P — P’ be a presheaf map. Prove that the following state-
ments are equivalent:

(i) ¢ is an isomorphism;

(ii) |P(U): P(U) — P’(U) is an isomorphism for every open
set U;



302 SETTING THE STAGE CH. 5

5.42

543

*5.44

*5.45

*5.46

547

5.48

*5.49

(iii) @|P(U): P(U) — P'(U) is a bijection for every open set U.

Prove that every presheaf of abelian groups P on a discrete space X
is a sheaf.
If X = {x} is a space with only one point, prove that

pSh(X, Ab) = Sh(X, Ab) = Ab.

Let x, A be a skyscraper sheaf, as in Example 5.72.
(i) Prove, for every sheaf G, that there is an isomorphism

Homgz (Gy, A) = Homgp (G, x+A)

that is natural in G.
(ii) Every sheaf map ¢: F — G induces homomorphisms of
stalks ¢y : Fy, — Gy forall y € X. Choose x € X. If
is a sheaf over X with stalk F, = A, prove that there is a
sheaf map ¢ : F — x,A with o, = 14.
Let v: P — I'(0, P%) be the natural map in Theorem 5.68: in
the notation of this proposition, if U is an open set in X, then
vy: P(U) — T(U, P is given by 0 +— o If x € X, prove
that v, : o (x) = o®(x) = o (x).
Let X be a topological space and let B be a base for the topology U
on X. Viewing B as a partially ordered set, we may define a presheaf
on B to be a contravariant junctor Q: B — Ab. Prove that O can
be extended to a presheaf Q: U/ — Ab by defining

QW) = limyes Q(V).

If U € B, prove that @(U ) is canonically isomorphic to Q(U).

(i) If f: A — B isahomomorphism in Ab and K = ker f
is the usual kernel (which is a subgroup!), prove that the
inclusion i: K — A is a categorical kernel of f.

(ii) If f: A — Bisahomomorphismin Aband C = B/im f
is the usual cokernel (which is a quotient group), then the
natural map p: B — C is a categorical cokernel of f. Note
that im f = ker p.

Let S = (E, p, X) be an etale-sheaf and let G = (G, p|G, X),
where G C E. Prove that I'((J, G) is a subsheaf of I"((J, S) if and
only if Gisopenin E and G, = GNE, is asubgroup for all x € X.
If F is a subsheaf of a sheaf G, define the quotient sheaf as (G/F)*,
the sheafification of the presheaf G/F. Define the natural map to be
the composite 7: G — G/F — (G/F)*. Prove thatif .: F — G
is the inclusion, then the natural map is coker .
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5.50 Denote the sheafification functor pSh(X, Ab) — Sh(X, Ab) by
P + P*. Prove that * is left adjoint to the inclusion functor
Sh(X, Ab) — pSh(X, Ab). [Either prove this directly or use the
fact that f, f™* is the unit of the adjoint pair (fix, f*).]

5.5 Abelian Categories

The most interesting categories for Homological Algebra are abelian cate-
gories, so called because of their resemblance to Ab. Our discussion will
apply to categories of modules, sheaves, and chain complexes.

Definition. A category C is additive if
(i) Hom(A, B) is an (additive) abelian group for every A, B € obj(C),

(i1) the distributive laws hold: given morphisms

a ! b
X—A=B—Y,
8

where X and Y € obj(C), then

b(f +8) =0bf +bg and (f +g)a= fa+ga,

(iii) C has a zero object (recall that a zero object is an object that is both
initial and terminal),

(iv) C has finite products and finite coproducts: for all objects A, B in C,
both A M B and A U B exist in obj(C).

If C and D are additive categories, a functor 7: C — D (of either vari-
ance) is additive if, for all A, B and all f, g € Hom(A, B), we have

T(f+g=Tf+Tg;

that is, the function Hom¢ (A, B) — Homp(T A, T B), given by f +— Tf,is
a homomorphism of abelian groups.

Of course, if T is an additive functor, then 7 (0) = 0, where O is either a
zero object or a zero morphism.

Lemma 2.3 shows that gkMod and Mody are additive categories, while
Exercise 5.38 on page 301 and Proposition 5.78 show that both pSh(X, Ab)
and Sh(X, Ab) are additive categories. Of course, She((X, Ab) = Sh(X, Ab)
is also additive. On the other hand, neither Groups nor ComRings is an
additive category.
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Proposition 2.4 shows that the Hom functors RkMod — Ab are additive
functors, while Theorem 2.48 shows that the tensor product functors are ad-
ditive.

That finite coproducts and products coincide for modules and for sheaves
is a special case of a more general fact: finite products and finite coproducts
coincide in all additive categories.

Lemma 5.87. Let C be an additive category, and let M, A, B € obj(C).
Then M = AN B if and only if there are morphismsi: A — M, j: B — M,
p:M— A andq: M — B such that

pi=1la, qj=1lp, pj=0, qi=0, and ip+jq=1ln.
Moreover, AN B is also a coproduct with injections i and j, and so
ANMBZ=AUB.

Proof.  The proof of the first statement, left to the reader, is a variation of the
proof of Proposition 2.20. The proof of the second statement is a variation of
the proof of Proposition 5.8, and it, too, is left to the reader. The last statement
holds because two coproducts, here ALl B and A M B, must be isomorphic. e

If A and B are objects in an additive category, then A1 B = A U B; their
common value, denoted by A @ B, is called their direct sum (or biproduct).

Corollary 5.88. If C and D are additive categories and T: C — D is an
additive functor of either variance, then T(A @ B) = T(A) & T (B) for all
A, B € obj(C).

Proof. Modity the proof of Corollary 2.21 using Lemma 5.87. e

We have been reluctant to discuss injections and surjections in categories;
after all, morphisms in a category need not be functions. On the other hand, it
is often convenient to have them.

Definition. A morphism u: B — C in a category C is a monomorphism'>

(or is monic) if u can be canceled from the left; that is, for all objects A and
all morphisms f, g: A — B, we have that uf = ug implies f = g.

S
A= B — C.
8

It is clear that u: B — C is monic if and only if, for all A, the induced
map u,: Hom(A, B) — Hom(A, C) is an injection. In an additive category,

12 A useful notation for a monomorphism f: A — Bis A — B, while a notation for an
epimorphism g: B — Cis B — C.
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Hom(A, B) is an abelian group, and so u is monic if and only if ug = 0
implies g = 0. Exercise 5.55 on page 321 shows that monomorphisms and
injections coincide in Sets and in kMod. Every injective homomorphism in
Groups is monic, but we must be clever to show this (see Exercise 5.59).
The underlying function of a monomorphism in a concrete category is usually
(but not always) an injection; Exercise 5.56 gives an example of a concrete
category in which these two notions are distinct.
Here is the dual definition.

Definition. A morphism v: B — C in a category C is an epimorphism (or
is epic) if v can be canceled from the right; that is, for all objects D and all
morphisms &, k: C — D, we have that hv = kv implies h = k.

v h
B— C=D.

k
It is clear that v: B — C is epic if and only if, for all D, the induced
map v*: Hom(C, D) — Hom(B, D) is an injection. In an additive category,
Hom(A, B) is an abelian group, and so v is monic if and only if gv = 0
implies g = 0. The relation between an epimorphism in a concrete category
and the surjectivity of its underlying function is not clear. Exercise 5.55 on
page 321 shows that epimorphisms and surjections coincide in Sets and in
gMod. On the other hand, if R is a domain, then the ring homomorphism
¢: R — Frac(R), given by r +— r/1, is an epimorphism in ComRings; if
A is a commutative ring and &, k: Frac(R) — A are ring homomorphisms
agreeing on R, then h = k. However, ¢ is a surjective function only when R
is a field. Another example is provided by Top,, the category of Hausdorff
spaces. A continuous f: X — Y with im f a dense subspace of Y is an
epimorphism, for any two continuous functions agreeing on a dense subspace
must be equal. Recognizing presheaf monomorphisms and epimorphisms will

follow from the upcoming discussion of abelian categories.

Definition. If u: A — B is a morphism in an additive category .4, then its
kernel keru is a morphism i: K — A that satisfies the following universal
mapping property: ui = 0 and, forevery g: X — A withug = 0, there exists
aunique 0: X — K withif = g.

X
| 0 W
01 16
y 8 0 v
K—>A—>B8 Y

L

There is a dual definition for cokernel (the morphism 7 in the diagram).
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Proposition 5.89. Letu: A — B be a morphism in an additive category A.
(1) Ifkeru exists, then u is monic if and only if keru = 0.
(i1) Dually, if coker u exists, then u is epic if and only if cokeru = 0.

Proof.  We refer to the diagrams in the definitions of kernel and cokernel. Let
keru bet: K — A, and assume that: = 0. If g: X — A satisfies ug = 0,
then the universal property of kernel provides a morphism 6: X — K with
g = 8 = 0 (because ¢t = 0). Hence, u is monic. Conversely, if u is monic,
consider

L

K=A-5 B.

0
Since ut = 0 = u0, we have ¢t = 0. The proof for epimorphisms and cokers
isdual. e

Categorical kernels and cokernels are equivalence classeses of morphisms
even though, in our heart of hearts, we think of them as subobjects. However,
we saw, in Example 1.3(xi), that objects in a category may not have subob-
jects in a naive sense, for objects in an arbitrary category are not comprised
of elements—there are only other objects and morphisms. Let us try, never-
theless, to define a subobject of an object B. It must, obviously, involve an
object, say, A, but this is not enough; we need a morphismi: A — B (indeed,
a monomorphism 7) to relate A to B. Defining a subobject A of B to be an
ordered pair (A, i), where i : A — B is monic, is inadequate. In Ab, for ex-
ample, let B = Q and A = Z. The homomorphisms i, j: A — B, defined by
i(1) = 1land j(1) = —1, are both monic. The ordered pairs (A, i) and (A, j)
are distinct, but, intuitively, we want them to be the same; the subgroups (1)
and (—1) are equal, after all.

Definition. If B is an object in an additive category A, consider all ordered
pairs (A, f), where f: A — B is a monomorphism. Call two such pairs
(A, f) and (A’, f') equivalent if there exists an isomorphism g: A’ — A
with ' = fg.

A——B

gT /
1

A/

A subgadget of B is an equivalence class [(A, f)], and we call A a subobject
of B. Note thatif (A’, f’) is equivalent to (A, f), then A’ = A.

Even though kernels are morphisms, we may regard them as subobjects—
just choose a pair (A, f) from the equivalence class. In a general category C,
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there may not exist any monomorphisms X — B, where X € obj(C), ex-
cept 1, and so B may have no subobjects other than [15] (see Exercise 5.63
on page 321). Here is the dual notion of quotient.

Definition. If B is an object in an additive category A, consider all ordered
pairs (f, C), where f: B — C is an epimorphism. Call two such pairs
(f, C) and (f’, C’) equivalent if there exists an isomorphism g: C — C’
with f/ = gf. A quotient of B is an equivalence class [(f, C)], and we call
C a quotient object of B. Note that if (f’, C’) is equivalent to (f, C), then
C'=C.

We may now regard cokernels as quotient objects—just choose a pair
(f, C) from the equivalence class.

Abelian categories are additive categories in which a reasonable notion of
exactness can be defined. In Proposition 5.89, we saw thatifu: A — Bisa
morphism in an additive category and ker u exists, then u is monic if and only
if ker u = 0; dually, if coker u exists, then u is epic if and only if coker u = 0.

Definition. A category C is an abelian category if it is an additive category
such that

(i) every morphism has a kernel and a cokernel,

(ii) every monomorphism is a kernel and every epimorphism is a coker-
13
nel.

One consequence of the existence of finite direct sums, kernels, and cok-
ernels in an abelian category is the existence of finite direct and inverse limits
(see Exercise 5.60 on page 321).

Remark. Abelian categories are self-dual in the sense that the dual of every
axiom in its definition is itself an axiom; it follows that if A is an abelian cate-
gory, then so is its opposite A°P. A theorem using only the axioms in its proof
is true in every abelian category; moreover, its dual is also a theorem in every
abelian category, and its proof is dual to the original proof. The categories
rMod and Modpy, are abelian categories having extra properties [a category is
isomorphic to gMod for some ring R if and only if it is a cocomplete abelian
category having a small projective generator P; in this case, R = End(P)
(see Pareigis, Categories and Functors, p. 241)]. Module categories are not
self-dual, because they have these additional properties. This explains why
a theorem and its dual that are true in every module category may have very

3Exercise 5.53 on page 320 says, in any category having a zero object, that kernels are
monic and cokernels are epic. The converse is true in abelian categories.
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different proofs. For example, the statements “every module is a quotient
of a projective module” and “every module can be imbedded in an injective
module” are dual and are always true. The proofs are not dual, because these
statements are not true in every abelian category. Exercise 5.64 on page 322
shows that the abelian category of all torsion abelian groups has no nonzero
projectives, and Exercise 5.65 shows that the abelian category of all finitely
generated abelian groups has no nonzero injectives. <

Example 5.90.

@

(i)

(iii)

(iv)

)

For every ring R, both pMod and Mody are abelian categories. In
particular, zMod = Ab is abelian.

The full subcategory G of Ab of all finitely generated abelian groups is
an abelian category, as is the full subcategory 7 of all torsion abelian
groups.

The full subcategory of Ab of all torsion-free abelian groups is not an
abelian category, for there are morphisms having no cokernel; for ex-
ample, the inclusion 27 — Z has cokernel I, which is not torsion-free.

Quillen introduced a more general notion that is adequate for Algebraic
K-Theory.

Definition. A category P is an exact category if P is a full subcategory
of some abelian category A and if P is closed under extensions; that
is, if 0 - P - A — P” — 0 is an exact sequence in A, and if
P’, P" € obj(P), then A € obj(P).

Every abelian category is an exact category. The full subcategory of Ab
consisting of all torsion-free abelian groups is an exact category, but it
is not an abelian category.

The category Groups is not abelian (it is not even additive). If S € G is
a nonnormal subgroup of a group G, then the inclusion i : S — G has
no cokernel. However, if K is a normal subgroup of G with inclusion
j: K — G, then coker j does exist. Thus, axiom (ii) essentially says
that every subobject in an abelian category is normal. <«

Definition. Let f: A — B be a morphism in an abelian category, and let
coker f be 7: B — C for some object C. Then its image is

im f = ker(coker f) = ker.
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In more suggestive notation,
im(A l) B) = ker(coker A l> B) = kerrt.

A sequence A i> B -5 Cin Ais exact if there is equality of subobjects

ker g = im f.

Remark. Here is another way to view exactness. If f: A — B is a mor-
phism in an abelian category, then f = me, where m = ker(coker f) is
monic and e = coker(ker f) is epic. Moreover, this factorization is unique
in the following sense. If f = m’e’, where m’ is monic and ¢’ is epic, then
there is equality of subobjects [m] = [m'] and [e] = [¢] (see Mac Lane, Cat-
egories for the Working Mathematician, Chapter VIII, Sections 1 and 3). In
light of this, we may redefine exactness of a sequence in an abelian category.
If f = me and g = m'e’, where m, m’ are monic and e, ¢’ are epic, then
A R B %5 Cisexactif and only if [e] = [m']. <«

Recall that if X is a topological space with topology U, then a presheaf
of abelian groups over X is a contravariant functor i/ — Ab, and a sheaf is a
presheaf that satisfies the equalizer condition. We now generalize this notion
by replacing Ab by an abelian category.

Definition. If A is an abelian category, then a presheaf on X with values
in A is a contravariant functor P: U/ — A; we shall always assume that
P(@) = 0. A sheaf is a presheaf that satisfies the equalizer condition. A
(pre)sheaf map is a natural transformation, and all presheaves form the cate-
gory pSh(X, A). All sheaves form the full subcategory

Sh(X, A).

Theorem 5.91. If A is an abelian category, then Sh(X, A) is an abelian
category.

Proof. 'The theorems in the previous section for Sh(X, Ab) generalize to
Sh(X, A), for the only properties of Ab that were used hold in every abelian
category. Now Sh(X, A) is an additive category, by Exercise 5.38 on page 301
and Proposition 5.78, and it has kernels and cokernels, by Propositions 5.80
and 5.83. It remains to show that monomorphisms ¢ are kernels and epimor-
phisms 1 are cokernels. Given a sheaf map ¢: F — G, then coker ¢ equals
¥ G — (G/imp)*.

By Corollary 5.86, there is an exact sequence of sheaves

0>K->rF5S g 5K —>o.



310 SETTING THE STAGE CH. 5

If ¢ is monic, then ker ¢ = 0, by Proposition 5.89, for Sh(X, A) is an additive
category, and so 0 — F %, G % K'is an exact sequence in Sh(X, A).

Hence, there is an exact sequence 0 — F; AN Gy N K. in A; that is,
img, = kerv, for all x. Therefore, ¢ = kerv, by Lemma 5.69. A dual
argument shows that epimorphisms are cokernels. e

We remark that minor changes in the proof of Theorem 5.91 show that
pSh(X, A) is an abelian category. However, we will give another proof of
this fact in Corollary 5.94.

The next two propositions construct new abelian categories from old ones.

Proposition 5.92. Let S be a full subcategory of an abelian category A. If,
forall A, B € obj(S) andall f: A — B,

(1) a zero object in A lies in S,
(i) the direct sum A ® B in A lies in S,

(iii) both ker f and coker f liein S,

. . . f g .
then S is an abelian category. Moreover, if A — B —> C is an exact
sequence in S, then it is an exact sequence in A.

Proof.  The hypothesis gives S additive, by Exercise 5.54 on page 320, so
that S is abelian if axiom (ii) in the definition of abelian category holds. If
f: A — B is a monomorphism in S, then ker f = 0, by Proposition 5.89.
But ker f is the same in A as in S, by hypothesis, so that f is monic in
A. By hypothesis, coker f is a morphism in S. As A is abelian, there is a
morphism g: B — C with f = kerg. But g is a morphism in S, because
S contains cokernels, and so f = ker g in S. The dual argument shows that
epimorphisms in S are cokernels.

Finally, since kernels and cokernels are the same in S as in A, images are
also the same, and so exactness in S implies exactness in . A. e

Proposition 5.93. If A is an abelian category and C is a small category,
then the functor category AC is an abelian category.

Proof.  We assume that C is small to guarantee that the Hom sets Hom(F, G),
where F,G: C — A, are sets, not proper classes (see the discussion on
page 18). The zero object in AC is the constant functor with value 0, where 0 is
a zero object in A. If 7, 0 € Hom(F, G) = Nat(F, G), where F,G: C — A
are functors, definet +o0: F — G by (t +0)c = 71¢c +0oc: FC — GC
for all C € obj(C). Finally, define F & G by (F @ G)C = FC & GC. Itis
straightforward to check that these definitions make A an additive category.
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If t: F — G, define K by
KC = ker(t¢).

In the following commutative diagram with exact rows, where f: C — C’
in C, there is a unique Kf: KC — KC’ making the augmented diagram
commute.

0 KC—S=FcC GC
|
Kfl lFf in
N
0 KC'——= FC’ GC’

The reader may check that K is a functor, (: K — F is a natural transforma-
tion, and ¢ = ker 7; dually, cokernels exist in A€ . Verification of the axioms
is routine. e

Combining these propositions gives the following examples.

Corollary 5.94. Let A be an abelian category.

(i) The category pSh(X, A) of presheaves over a space X with values in A
is abelian.

(ii) The categories of direct systems Dir (I, A) and inverse systems Inv(I, A)
are abelian.

Proof.

(i) pSh(X, A) is the functor category AY” , where U is the topology on X.
The contravariance of a presheaf is encoded by the “exponent” being
the small opposite category U°P.

(ii) Dir(1, A) is the functor category A’, where the partially ordered set
I is viewed as a (small) category; similarly, Inv(Z, A) is the functor
category A/, e

Theorem 5.91, which says that categories of sheaves are abelian, does
not follow from Corollary 5.94 and Proposition 5.92, for the category of
presheaves and its subcategory of sheaves do not satisfy the conditions of
Proposition 5.92; sheaf cokernels may be different than presheaf cokernels.

Example 5.95. If R is a commutative ring, then X = Spec(R) is the set of
all of its prime ideals. The Zariski topology has as closed sets those subsets
of the form

V(S) = {p € Spec(R) : § C p},
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where S is any subset of R. Of course, open sets are complements of closed
sets. A base!'* of the Zariski topology turns out to be all D(s) = X — V({s}),
where s € R is nonzero. Thus,

D(s) = {p € Spec(R) : s ¢ p}.

Exercise 5.46 on page 302 shows that we can define a presheaf on a space X
by giving its values on basic open sets. If D(#) € D(s), then t € ~/Rs, by
Hilbert’s Nullstellensatz, and so " = rs for some r € R and n > 0. The

structure sheaf of R is the presheaf O over X = Spec(R) of commutative
D(s) .
D(t) *

t~'R defined by u/s™ > ur™/t"™ (recall that t"* = rs). The structure sheaf
O is a sheaf of commutative rings, and the stalk Oy, is the localization Ry.
(See Hartshorne, Algebraic Geometry, p. 71.) <«

rings having sections O(D(s)) = s~ 1R and restriction maps p sTIR —

Example 5.96. Serre [“Faisceaux algébriques cohérents,” Annals Math 61
(1955), pp. 197-278] developed the theory of sheaves over spaces X that need
not be Hausdorff, enabling him to apply sheaves in Algebraic Geometry. For
example, the structure sheaf O of a commutative ring R is a sheaf of com-
mutative rings over X = Spec(R), and Spec(R) is rarely Hausdorff. Because
of the importance of Serre’s paper, it has acquired a nickname; it is usually
referred to as FAC.

Definition. An O-Module (note the capital M), where O is a sheaf of com-
mutative rings over a space X, is a sheaf F of abelian groups over X such
that

(1) F(U) is an O(U)-Module for every open U C X,

(i) if U € V, then F(U) is also an O(V)-Module, and the restriction

,0[‘]/ : F(V) = F(U) is an O(V)-Module homomorphism.

If F and G are O-Modules, then an O-morphism t: F — G is a sheaf map
such that ty: F(U) — G(U) is an O(U)-map for every open set U.

For example, if O is the structure sheaf of a commutative ring R, then
every R-module M gives rise to an O-Module M over Spec(R) whose stalk
over p € Spec(R) is M, = Ry, Qr M.

All O-Modules and O-morphisms form an abelian category o Mod which
has a version of tensor product. If F and G are O-Modules, then U
FU) ®ow) G(U) is a presheaf, and the tensor product F ®¢ § is defined
to be its sheafification. There is a faithful exact functor kMod — oMod

14Recall that a base of a topology is a family of open subsets B3 such that every open set
is a union of sets in 5.
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with M — M, and gMod is isomorphic to the full subcategory of oMod
generated by all M (see Hartshorne, Algebraic Geometry, 11 §5).

Definition. If O is a sheaf of commutative rings over a space X, then an
O-Module F is coherent' if there is an exact sequence

0 -0 - F—0,

where r, s are natural numbers and O is the direct sum of r copies of O. (We
remark that O is not a projective object in the category of O-Modules.)

If 7 is an O-Module over X, then an r-chart is an ordered pair (U, ¢),
where ¢p: FIU — O"|U is an O-isomorphism of O-Modules; we call U
the coordinate neighborhood of the chart. An O-Module F is locally free
of rank r if there is a family (U;, ¢;);cs of r-charts, called an atlas, whose
coordinate neighborhoods form an open cover of X. An invertible sheaf'° is
a locally free O-Module of rank 1.

Let F be a locally free O-Module over a space X, and let (U;, ¢;)iecs be
an atlas. Whenever an intersection U;; = U; N U; is nonempty, we can de-
fine O|U;;-isomorphisms ¢; : (F|U;)|U;j — O"|U;; and ¢;: (FIU)|U;j —
O"|U;; (these isomorphisms are really restrictions of ¢; and ¢;). Now define
O|U; j-automorphisms of O"|U;;

1
8ij = ¢i¢; >

called transition functions. Transition functions satisfy the cocycle condi-
tions:

() gijgjigri = lorw,; foralli,jel  (pig; pjo ' orp; " = 1);
(11) 8ii = 1Or|Ui foralli € I.

Of course, transition functions depend on the choice of atlas (U;, ¢;)ic;. Con-
sider new transition functions arising from a new atlas (U;, ¢;);c; in which
we vary only the O|U;-isomorphisms, keeping the same coordinate neigh-
borhoods. If we define i; by ¢; = h;p; ! then the new transition functions
are
gij = 51‘(75]-_1 = hi(pi(pj_lh;l = higijh;l-

Let (gij), (gij), where g;;, gij € Aut(O"|U;;), be two families that may not
have arisen as transition functions of a locally free O-Module of rank . Call
(gij). (2i;) equivalent if there are O(U;;)-isomorphisms h; such that

gij = higijhfl-

I5A coherent F-Module is an analog of a finitely presented module, and coherent
rings are so called because their finitely generated modules are analogous to coherent O-
Modules.

161f ~ is an invertible sheaf, then there exists an (invertible) sheaf G with F ® n G = O.
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Definition. Locally free O-Modules F and G of rank r are isomorphic if
their transition functions (g;;) and (gi ;) are equivalent.

Given a family (g;;), where g;; € Aut(O"|Uj;), that satisfies the cocycle
conditions, it is not hard to see that there is a unique (to isomorphism) locally
free O-Module F whose transition functions are the given family. In particu-
lar, if F is the constant sheaf with F(U) of rank 7, then there is an open cover
U giving transition functions g;; = h,-h;l.

A locally free O-Module of rank r is almost classified by an equivalence
class of cocycles (g;;); we must still investigate transition functions that arise
from an atlas having different families of coordinate neighborhoods. It turns
out that transition functions are elements of a certain cohomology set of a
sheaf with coefficients in the general linear group GL(r, k) (cohomology need
not be a group when coefficients lie in a nonabelian group). <«

Projectives and injectives can be defined in any category. However, rec-
ognizing epimorphisms and monomorphisms in general categories is too dif-
ficult, and we usually restrict attention to abelian categories.

Definition. An object P in an abelian category A is projective if, for every
epicg: B — C andevery f: P — C,there exists h: P — B with f = gh.

, P E\~ ,
- f fT N
y ~
B—— A——B

An object E in an abelian category A is injective if, for every monic g: A— B
andevery f: A — E, thereexists h: B — E with f = hg.

Definition. An abelian category A has enough injectives if, for every A €
obj(A), there exist an injective E and a monic A — E. Dually, A has enough
projectives if, for every A € obj(A), there exist a projective P and an epic
P — A.

We saw in Theorem 2.35 that pMod has enough projectives, and we saw
in Theorem 3.38 that gkMod has enough injectives.

Proposition 5.97. If A is an abelian category that is closed under products
and that has enough injectives, then Sh(X, A) has enough injectives."”

71In The Theory of Sheaves, Swan writes “... if the base space X is not discrete, I know
of no examples of projective sheaves except the zero sheaf.” In Bredon, Sheaf Theory,
McGraw-Hill, New York, 1967, Exercise 4 on p. 20 reads: show that on a locally connected
Hausdorff space without isolated points, the only projective sheaf is 0.
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Proof. In Example 5.72(i), we defined a skyscraper sheaf x,.A, where A is
an abelian group and x € X, by

A ifxeU,

(x:A)U) = {0} otherwise.

Of course, we may generalize to A € obj(A). By Exercise 5.44 on page 302,
there is an isomorphism Hom 4(G,, A) = Homgp (G, x4 A) that is natural in G.
In particular, if A is injective, then Hom 4 (L], A) is an exact functor. It follows
that Homgp (L, x4 A) is also an exact functor; that is, x, A is an injective sheaf.
The proof of Proposition 3.28 shows that any product of injectives is injective;
therefore, if A, is injective, then so is the sheaf ]_[x6 x (X Ax).

Let F be a sheaf. By hypothesis, for every x € X, there are an injective
A, € obj(A) and a monic A, : Fy — A,. Assemble these morphisms into a
sheaf map A1 [[,.x(x+Fx) = [[,ex(x+Ax). By Exercise 5.44 on page 302,
there is a sheaf map ¢: F — x,F, with ¢, : F, — F, the identity. By the
universal property of product, there is a sheaf map

erx(x*}—x) =< b F

T i“’*

XeFy.

The composite A0 : F — [],.x(xxAx) is a monic sheaf map: keri6 = 0
because (L0), = A,0,, each of whose factors is monic in A. e

The thrust of the next theorem is that it allows us to do diagram chasing
in abelian categories.

Definition. A functor F: C — D, where C, D are categories, is faithful
if, for each A, B € obj(C), the function Hom¢(A, B) — Homp(FA, FB),
given by f +— Ff, is an injection; F is full if the function Hom¢ (A, B) —
Homp(F A, FB) is surjective.

If A is an abelian category, then a functor F: A — Ab is exact if
A" — A — A” exactin A implies FA' — FA — FA” exact in Ab.

Theorem 5.98 (Freyd—Heron'®—Lubkin).  If A is a small abelian cate-
gory, then there is a covariant faithful exact functor F: A — Ab.

Sketch of Proof. Recall the Yoneda Imbedding, Corollary 1.20: if A is a
small category, then the functor ¥: A% — Sets”, which sends each A €
obj(A) to the representable functor Hom(A, [J), imbeds .4 as a subcategory

I8 have been unable to find any data about Heron other than that he was a student at
Oxford around 1960.
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of Sets™. In the functor category, Hom(F, G) = Nat(F, G). The Yoneda
Lemma, Theorem 1.17, says that

Hom(Y (A), Y (B)) = Nat(Hom(A, ), Hom(B, 00)) = Hom(B, A),

from which it follows that if A is an additive category, then imY C Ab# and
Y is an additive functor.

One observes next that the functor category Ab* has a generator, namely,
U = D scobj(a) Hom(A, ), and this is used to prove that every functor F' €

Ab* has an injective envelope, Env(F) (however, Example 5.20 shows that
Env is not, in general, a functor). In particular, Env(U): A — Ab turns out
to be an exact faithful functor. For details, see Mitchell, Theory of Categories,
p-101. e

The imbedding theorem can be improved so that its image is a full sub-
category of Ab.

Theorem 5.99 (Mitchell). If A is a small abelian category, then there is a
covariant full faithful exact functor F: A — Ab.

Proof. Mitchell, Theory of Categories, p. 151. e

In his Theory of Categories, p. 94, Mitchell writes,

Let us say that a statement about a diagram in an abelian category
is categorical if it states that certain parts of the diagram are or
are not commutative, that certain sequences in the diagram are
or are not exact, and that certain parts of the diagram are or are
not (inverse) limits or (direct) limits. Then we have the following
metatheorem.

Metatheorem. Let A be an abelian category.

(1) If a statement is of the form “p implies q,” where p and q are categori-
cal statements about a diagram in A, and if the statement is true in Ab,
then the statement is true in A.

(ii) Consider a statement of the form “p implies q,” where p is a categor-
ical statement concerning a diagram in A, and q states that additional
morphisms exist between certain objects in the diagram and that some
categorical statement is true of the extended diagram. If the statement
can be proved in Ab by constructing the additional morphisms through
diagram chasing, then the statement is true in A.

Proof. See Mitchell, Theory of Categories, p. 97. The category A need
not be a small category, for the metatheorem follows from the Imbedding
Theorems with A replaced by its full subcategory having objects occurring in
a diagram. e
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Part (i) follows from the Freyd—Heron—Lubkin Imbedding Theorem. To
illustrate, the Five Lemma is true in Ab, and so it is true in every abelian
category. Another example is the 3 x 3 Lemma (see Exercise 2.32 on page 96),
which we now see holds in every abelian category.

Part (ii) follows from Mitchell’s Full Imbedding Theorem. To illustrate,
recall Proposition 2.70: given a commutative diagram of abelian groups with
exact rows,

A —= AL gy 0
|

fi lg P
Y

B’ 7 B 7 B” 0,

there exists a unique map #: A” — B” making the augmented diagram com-
mute. Suppose now that the diagram lies in an abelian category A. Applying
the imbedding functor F: A — Ab of the Full Imbedding Theorem, we
have a diagram in Ab as above, and so there is a homomorphism in Ab, say,
h: F(A”) — F(B"), making the diagram commute: F(q)F(g) = hF(p).
Since F is a full imbedding, there exists n € Hom4(A”, B”) with h = F(n);
hence, F(qg) = F(q)F(g) = hF(p) = F(n)F(p) = F(np). But F is faith-
ful, so that gg = np. Other examples are given in the next chapter: the Snake
Lemma, which constructs the connecting homomorphism in homology; the
Comparison Theorem; the Horseshoe Lemma.

5.5.1 Complexes

The singular homology groups H,,(X) of a topological space X, for n > 0,
are constructed in two steps: first, construct the singular complex

Se(X) = Co1 (X) 23 Cu(0) 25 €, 1(X)
second, define H, (X) = ker d,/im d,,+1. The first step is geometric; the sec-
ond is algebraic, and it is this second step that is the raison d’etre of Homo-
logical Algebra. For any abelian category .4, we are now going to construct
another abelian category Comp(.A4), the category of complexes over A; the
assignment X > So(X) will then be a functor Top — Comp(Ab). In the
next chapter, we will construct homology functors H, : Comp(A) — A, for
all n, and singular homology is the composite of these two functors.

Definition. A complex (abbreviating chain complex) in an abelian category
A is a sequence of objects and morphisms in A (called differentials),

d, dy
(Corda) = = App1 =5 Ay 5 Apy —,
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such that the composite of adjacent morphisms is O:
dydy+1 =0 for alln € Z.

We usually simplify the notation, writing C, or even C instead of (C,, d,).

It is convenient to consider the category of all complexes, and so we in-
troduce its morphisms.

Definition. If (C,, d,) and (C,, d_) are complexes, then a chain map
f = fo: (Cu d.) - (C/.’ d:)

is a sequence of morphisms f,: C,, — C), for all n € Z making the following
diagram commute:

dn+1 dn
Cn+1 C, Cn-1

N S

/ n+1 / n /
Cn+1 Cn Cn—l

It is easy to check that the composite g f of two chain maps
fo: (Co,do) — (C,,dy) and  g.: (C,.d,) — (C,d,)

is itself a chain map, where (gf), = g, f,. The identity chain map 1¢, on
(C,, d,) is the sequence of identity morphisms 1¢, : C;, — C,,.

The singular complex S,(X) of a topological space X is an example of a
complex of abelian groups.

Definition. If A is an abelian category, then the category of all complexes
in A is denoted by Comp(.A). If R is a ring, then Comp(zMod) is denoted
by gComp and Comp(Modpy) is denoted by Compy. If the category A (or
the ring R) is understood, we may simply write Comp.

The most important example of Comp(.A) is Comp = Comp(Ab), but it
is also interesting when A = Sh(X, Ab), which arises when one defines co-
homology of a topological space with sheaf coefficients. Although everything
we say in this subsection holds for general abelian categories, we assume here
that complexes are complexes of abelian groups, leaving the reader to gener-
alize using the Metatheorem on page 316.

A complex (A,, 8,) is defined to be a subcomplex of a complex (C,, d,)
if there is a chain map i: A, — C, with each i, monic. In pComp, we
have that (A,, J,) is a subcomplex of (C,, d,) if A, is a submodule of C,, and
dp = dn| A, for every n € Z.
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Proposition 5.100. [f A is an abelian category, then Comp(A) is an abelian
category.

Proof.  As we have just said, we only prove this when A = Ab. View Z first
as a partially ordered set under reverse inequality and then as a small category
(with morphisms m — n if m > n). By Proposition 5.93, the functor category
Ab? is an abelian category. Proposition 5.92 says that S is abelian if S is a
full subcategory of Ab% containing a zero object, the direct sum A & B of
A, B € 0bj(S), and both ker f and coker f, where f is a morphism in S.
All the steps are routine. Note that Comp is, by definition, a full subcategory
of Ab%. The zero complex is the complex each of whose terms is 0, while
(C.. ds) ® (C,,, d)) is, by definition, the complex whose nth term is C, & C,,
and whose nth differential is d,, ® d,,. If f,: (Co, ds) — (C,,d,) is a chain
map, define

Sn n
ker f = — Ker fuq —> ker f, LN ker f,—1 —,
where 6, = d,| ker f,, and

. . An+l . An .
imf =— im f,+; — im f, — im f,_| —,

where A, = d)|im f,. Then kerf is a subcomplex of C,, and imf is a
subcomplex of C,. If A, is a subcomplex of C,, define the quotient complex
to be

Co/Au = = Cu/Ay 2 Coot/Au_1 —,

where d,, : ¢, + Ap — dpcp + A, (it must be shown that d,, is well-defined:
ife,+A, =by+ Ay, thend,c,+A,—1 = dyby+An—1). It p,: C, — C, /Ay
is the natural map, then p: C, — C,/A, is a chain map. Finally, define

. On+1 . 9, . On—1
cokerf =— Cpy1/imd, 10 — C,/imd,y) —> Cn_1/imd, —— .

The reader must verify that the definitions just given agree with the categorical
definitions of ker and coker in Comp. e

Let us make some other important items in Comp explicit.

(i) An isomorphism in Comp is a chain map f: C, — C, for which
fn: Cp — C,, is an isomorphism in A for all n € Z (note that the se-
quence of inverses fn_1 is a chain map; that is, the appropriate diagram
commutes).

(i) If ((CL,d!));c;s is a family of complexes, then their direct sum is the
complex

Dc-- D, 24 Do T Do, .
i i i i

where @, d!, acts coordinatewise; that is, €, d. : (c}) > (dicl).
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(iii) It is easy to see that direct limits and inverse limits of complexes exist
in Comp(.A) if they exist in A.

(iv) A sequence of complexes and chain maps

lfm+1 fm 1
e A O SR

is exact if im f"+! = ker f for all m € Z.

The reader should realize that this notation is very compact. For ex-
ample, if we write a complex as a column, then a short exact sequence
of complexes is really the infinite commutative diagram having three
columns and exact rows:

ln+l Pn+1 //
Oi)Cn—i—l HHHCn_H%()
n+l ll/ \Ldr/l/Jrl
’ in Dn 7"
0 C Cn G, 0
d//

i Pn—1
0‘>C/ 1‘>” Cn 1 ’19 C;l/_ —= (.

A

fn+1 fn _ . .
A sequence of complexes — C!T! Z— C? ~— C'! — is exact if
and only if each row — C*! — C" — C"~! — is an exact sequence

of modules.

Exercises

5.51 If C is an additive category with zero object 0, prove that the unique
morphism A — 0 [where A € obj(C)] and the unique morphism
0 — A are the identity elements of the abelian groups Hom¢ (A, 0)
and Hom¢ (0, A).
5.52 If C is an additive category and C € obj(C), prove that Hom(C, C)
is a ring with composition as product.
*5.53 In any category having a zero object, prove that every kernel is a
monomorphism and, dually, every cokernel is an epimorphism.
*5.54 Let C be an additive category and let S be a subcategory. Prove that
S is an additive category if S is full, contains a zero object of C, and
contains the direct sum A @ B (in C) of all A, B € obj(S5).
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*5.55 (i) Prove that a function is epic in Sets if and only if it is sur-
jective and that a function is monic in Sets if and only if it
is injective.

(ii) Prove that an R-map is epic in gMod if and only if it is
surjective and that an R-map is monic in gMod if and only
if it is injective.

*5.56 Let C be the category of all divisible abelian groups.

(i) Prove that the natural map Q — Q/Z is monic in C.

(i) Conclude that C is a concrete category in which monomor-
phisms and injections do not coincide.
*5.57 Prove, in every category, that the injections of a coproduct are monic
and the projections of a product are epic.
*5.58 (i) Prove that every isomorphism in an additive category is
both monic and epic.

(ii) Prove that a morphism in an abelian category is an isomor-
phism if and only if it is both monic and epic.
(iii) Prove, in ComRings, that ¢: R — Frac(R) is both monic
and epic, but that ¢ is not an isomorphism.
*5.59 (Eilenberg—Moore) Let G be a (possibly nonabelian) group.

(i) If H is a proper subgroup of a group G, prove that there
exist a group L and distinct homomorphisms f, g: G — L
with f|H = g|H.

Hint. Define L = Sy, where X denotes the family of all the
left cosets of H in G together with an additional element,
denoted co. If a € G, define f(a) = f, € Sx by f,(c0) =
oo and f,(bH) = abH. Define g: G — Sy by g = vf,
where y € Sy is conjugation by the transposition (H, 00).

(ii) Prove that a homomorphism ¢: A — G, where A and G
are groups, is surjective if and only if it is an epimorphism
in Groups.

*5.60 We call lim  F orlim  F finite if the index set [ is finite. Prove that
. . o= ! .
if A is an additive category having kernels and cokernels, then A
has all finite inverse limits and direct limits. Conclude that A has
pullbacks, pushouts, equalizers, and coequalizers.
5.61 State and prove the First Isomorphism Theorem in an abelian cate-
gory A.
5.62 Prove that every object in Sets is projective and injective.
*5.63 (i) Let X be a set and, for each subset Y C X, letiy: Y —
X be the inclusion. If 2% is the family of all subsets of
X, prove that the function 2% {iy] : Y € X}, given
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*5.64

*5.65

(ii)
(@
(ii)
@

(ii)
(iii)

by Y — [iy], is a bijection, where [iy] is the categorical
subobject of X.

Prove that the analog of (i) is true for Groups, Rings, and
rMod, but it is false for Top.

Prove that the category 7 of all torsion abelian groups is an
abelian category having no nonzero projective objects.

Prove, for every index set I, that 7 has a product [ ];.;G;.
Prove that the full subcategory 7" of Ab consisting of all
torsion abelian groups is an abelian category that is closed
under (infinite) coproducts.

Prove that 7 has enough injectives.

Prove that 7 has no nonzero projective objects. Conclude
that 7 is not isomorphic to a category of modules.

*5,66 If A is an abelian category, prove that a morphism f = (f,) in

Comp(A) [i.e., a chain map] is monic (or epic) if and only if each
fu is monic (or epic) in A.

5.67 Let A be an abelian category with enough projectives, and let € C

obj(A) satisfy

(i) for every object A in A, there exists C € € and an epimor-

phism C — A;

(ii) if C € €, then every direct summand of C also lies in €.

Prove that every projective lies in €. The dual result also holds.



Homology

At the end of Chapter 1, we saw that the construction of homology groups of
topological spaces has a geometric half and an algebraic half. More precisely,
for each n > 0, the nth singular homology functor H,: Top — Abis a
composite Top — Comp(Ab) — Ab, where Comp(Ab) is the category of
all complexes of abelian groups. We now focus on the algebraic portion of
this construction.

The theorems in this chapter are true for abelian categories .A and additive
functors between them (the most interesting categories for us are categories
of modules, but the extra generality allows us to apply results to sheaves and
to complexes). Even though some of these results hold for arbitrary abelian
categories, we will usually assume that A has enough projectives or injectives.
In light of the Metatheorem on page 316, however, it suffices to prove these
theorems for the special case A = Ab.

6.1 Homology Functors

Recall that a complex in an abelian category A is a sequence of morphisms
(called differentials),

d”l n
(Cards) = — Cpp1 25 Cy -2 €y —,

with the composite of adjacent morphisms being 0:
dndn+1 =0 foralln € Z.
We usually simplify notation and write C, or C instead of (C,, d,).

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 323
DOI 10.1007/978-0-387-68324-9_6, (© Springer Science+Business Media LLC 2009
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In gMod, the condition d,,d,+; = 0 is equivalent to imd,+; C kerd,.

The category Comp(.A) has as objects complexes whose terms and dif-
ferentials are in A, as morphisms chain maps f = (f,): (Ce,ds) — (C.,d.)
making the following diagram commute:

dn+l d, dn—l
Cnt1 Cy - Cn1
Jnt1 \L fn\L \Lfn—l
/ / /
Cn+l d/ Cl’l d/ Cnfl d/ ’
n

n+1 n—1

and as composition (g,)(fn) = (gnfn) (€., coordinatewise composition).
We proved in Chapter 5 that Comp(.A) is an abelian category when A is.

Example 6.1.

(i) Every exact sequence is a complex, for the equalities imd,+; = kerd,
imply d,d,,+1 = 0.

(i1) If X is a topological space, then its singular chain groups and boundary
maps form a complex of abelian groups (called the singular complex)

n+1

Su(X) = — Sy (X) 2 5,(X) 25 5, 1(X) — .

However, the definition of singular complex is incomplete, for S, (X)
was defined only for n > 0. To complete the definition, set S,(X) =
{0} for all n < —1. The differentials S,, — S,_; for negative n are
necessarily 0, and so the lengthened sequence is, indeed, a complex.
This device of adding Os is always available.

Similarly, if K is a simplicial complex, then C,(K) is a complex, where

C, (K) is the group of all simplicial n-chains.

(iii) If A € obj(A) and k € Z is a fixed integer, then the sequence Qk (A)
whose kth term is A, whose other terms are 0, and whose differentials
are zero maps is a complex, called A concentrated in degree k.

(iv) Every morphism f: A — B is a differential; in more detail, form a

complex Ek( f) whose kth term is A, whose (k — 1)st term is B, whose
other terms are 0, and whose kth diffentiation is f:

()= 0>0>A-5B>0-0-.

Call ¥ (f) the complex having f concentrated in degrees (k,k — 1).
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(v) A short exact sequence can be made into a complex by adding Os to the
left and right:

50505 A-5BCH5050—.

Usually, one assumes that A is term 2, B is term 1, and C is term 0.
This is a complex because pi = 0.

(vi) Every sequence of objects (M,,) occurs in a complex, namely, (M,, d,),
in which all the differentials d,, are 0. <«

Let us begin by seeing that the idea of describing a module by generators
and relations gives rise to complexes. Recall our discussion in How to Read
This Book on pages xi and xii: if A is an R-module, then a presentation of A
is (X, Y), where F'is a free R-module mapping onto A, X is a basis of F, and
Y generates K = ker(F — A). A presentation allows us to treat equations in
A as if they were equations in the free module F. Computations in F, espe-
cially those involved in whether elements of F lie in K, become much simpler
when K is also free and Y is a basis. We know, however, that submodules of
free modules need not be free. It is natural to iterate taking generators and
relations: map a free module F onto K, and let (X, Y1) be a presentation of
K; that is, X is a basis of Fj and Y] generates K| = ker(F; — K). If K
is free, we stop; if K is not free, we continue with a presentation of it. Thus,
a free resolution of a module A is a generalized presentation; it is our way of
treating equations in A by a sequence of equations in free modules. We can
now begin to appreciate Theorem 8.37, Hilbert’s Theorem on Syzygies, which
says thatif R = k[xy, ..., x,] (Where k is a field) and A is an R-module, then
the kernel K, after n iterations must be free.

Definition. A projective resolution of A € obj(A), where A is an abelian
category, is an exact sequence

d d
P=—>P2—2>P1—1>P0—€>A—>0

in which each P, is projective. If A is kMod or Modg, then a free resolu-
tion of a module A is a projective resolution in which each P, is free; a flat
resolution is an exact sequence in which each P, is flat.

If P is a projective resolution of A, then its deleted projective resolution
is the complex

d d
PA=—>P2—2>P1—1>P0—>0.
A projective (or free or flat) resolution is a complex if we assume it has

been lengthened by adding Os to the right. Of course, a deleted resolution is
no longer exact if A # 0, for imd; = kere # ker(Py — 0) = Po.
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Deleting A loses no information: A = cokerdj; the inverse operation,
restoring A to Py, is called augmenting. Deleted resolutions should be re-
garded as glorified presentations.

Proposition 6.2. Every (left or right) R-module A has a free resolution
(which is necessarily a projective resolution and a flat resolution).

Proof. There are a free module F and an exact sequence
0— K| -5 Fy = A — 0,

Similarly, there are a free module F7, a surjection €1 : F1 — K1, and an exact
sequence

O—>K2i>Fli>K1—>0.
Splice these together: define di: F1 — Fp to be the composite ije1. It is
plain that imd; = K| = ker¢ and kerd; = K>, yielding the exact row

d
Fi ! Fy £ A 0

00— K> K.

This construction can be iterated for all n > 0, and the ultimate exact sequence
is infinitely long.
The parenthetical statement follows because free = projective = flat. e

We have actually proved more.

Corollary 6.3. If A is an abelian category with enough projectives, then
every A € obj(A) has a projective resolution.

Proof.  Apply the proof of Proposition 6.2, mutatis muntandis. e

Definition. An injective resolution of A € obj(A), where A is an abelian
category, is an exact sequence
0 1
E=0-4-5E 5 4 g2
in which each E” is injective.
If E is an injective resolution of A, then its deleted injective resolution is
the complex
A 0o d .1 d' 2
Ef=0—-E" — E — E-—.

Deleting A loses no information, for A = ker d°.
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Proposition 6.4. Every (left or right) R-module A has an injective resolu-
tion.

Proof. By Theorem 3.38, every module can be imbedded as a submodule
of an injective module. Thus, there are an injective module E, an injection
n: A — EY and an exact sequence

0> A5 E0O T, yo o,

where V0 = cokern and 7 is the natural map. Repeat: there are an injective
module E! and an imbedding n': V0 — E!, yielding the exact row

0 A EO El

vo yl——=0,

where dV is the composite d® = n' p. This construction can be iterated. o

Deleted injective resolutions should be regarded as duals of presentations.

Corollary 6.5. If A is an abelian category with enough injectives, then every
A € obj(A) has an injective resolution.
In particular, every sheaf with values in A has an injective resolution.

Proof. By Theorem 5.91, the category Sh(X, A) of sheaves is an abelian
category; by Proposition 5.97, it has enough injectives. e

Most categories of sheaves do not have enough projectives.

We may lengthen an injective resolution by adding Os to the left, but this
does not yet make it a complex, for the definition of complex says that the
indices must decrease if we go the right. The simplest way to satisfy the
definition is to use negative indices: define C_, = E", and

0>A—>Cy—>C_1—>C_r—

is a complex.

Definition. Given a projective resolution in an abelian category A,

dy d
P=— P, Py — = P 5 Py~ A— 0,

define Koy = kere¢ and K,, = kerd,,, forn > 1. We call K,, the nth syzygy of
P. Given an injective resolution

0 n
E=0—>A-5E S pl .. pr 4 prel

define Vy = cokern and V" = cokerd" !, forn > 1. We call V" the nth
cosyzygy of E.
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Injective resolutions are not the only way in which complexes with indices
going up can occur.

Example 6.6. Let A be an abelian category.

®

(ii)

Let F: A — Ab be a covariant additive functor, and let

dy
C=—-C, —Cp_1 —
be a complex. Then

(FC, Fd) = — F(Cy) 2% F(C,_)) —

is also a complex, for 0 = F(0) = F(d,dy+1) = F(d,)F(dy41) [the
equation 0 = F(0) holds because F' is additive]. Note that even if the
original complex is exact, the functored complex F'C may not be exact.

If F is a contravariant additive functor, it is also true that FC is a com-
plex, but we have to arrange notation so that differentials lower indices.
In more detail, after applying F', we have

FC= <« F(Cy) £ F(Co_y) <

the differentials Fd, increase indices by 1. Introducing negative indices
almost solves the problem. Define

X_pn = F(Cp),
so that the sequence becomes

Fd,
— X, <= X 41 <,

dy .
or - X_,41 Foy X_, —. The index on the map should be —n + 1,
and not n. Define

8_n+1 = Fd,.
The relabeled sequence now reads properly:

S—n+1
FC=—> X_,411 — X, —>. <«

Definition. A complex C is a positive complex if C,, = 0 for all n < 0.
Thus, a positive complex looks like

- C,—=>Ch-1 = ---—>C; — Cy— 0.
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All positive complexes form the full subcategory Comp..((A) of Comp(A).
A complex C is a negative complex (or cochain complex) if C,, = 0 for all
n > 0. A negative complex looks like

0—>Co—>C_1—>---—>C_,—>C_,_1 —.

All negative complexes form the full subcategory Compfo(A) of Comp(A).
As in Example 6.6(ii), we usually raise indices and change sign in this case:

0>C'>cl»... 5" ot .

Projective resolutions are positive complexes, and injective resolutions
are negative complexes.

Since Comp(.A) is an abelian category when A4 is, its Hom sets are abelian
groups; addition is given by

f+g=(fu+gn, where f = (f,) and g = (gn).

The following definitions imitate the construction of homology groups of
topological spaces, which we described in Section 1.3.

Definition. If (C, d) is a complex in Comp(A), where A is an abelian cat-
egory, define
n-chains = C,,
n-cycles = 7, (C) = kerd,,
n-boundaries = B, (C) = imd, 4.
Notice that C,,, Z,,, and B, all lie in A.

In gMod, the equation d,d,+; = 0 in a complex is equivalent to the
condition imd,+; € kerd,; hence, B,(C) € Z,(C) for every complex C.
This is also true in an abelian category:

Z, —C, T) Cp-1.
L n

Definition. If Cis a complex in Comp(.A), where A is an abelian category,
and n € Z, its nth homology is

H,(C) = Z,(C)/Bn(O).

Now H,, (C) lies in obj(.A) if quotients are viewed as objects, as on page 307.
However, if we recognize A as a full subcategory of Ab, then an element of
H, (C) is a coset 7 + B, (C); we call this element a homology class, and often
denote it by cls(z).
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Example 6.7.

(i) A complex C is an exact sequence if and only if H,(C) = 0 for all
n. Thus, homology measures the deviation of a complex from being an
exact sequence. An exact sequence is often called an acyclic complex;
acyclic means “no cycles”; that is, no cycles that are not boundaries.

(ii) There are two fundamental exact sequences arising from a complex
(C,d): foreachn € Z,

0— Bni> Z, — H,(C) =0
and
in dy
O—>Z,,L>Cn—>Bn_1—>0,
where iy, j, are inclusions and j,_1i,—1d, = dp; that is, d}, is just d,
with its target changed from C,—; to imd,, = B;_.
(iii) If (C, d) is a complex with all d, = 0, then H,(C) = C, forall n € Z,
for
H,(C) =kerd,/imd,4+ = kerd, = C,,.
In particular, the subcomplexes Z of cycles and B of boundaries have
all differentials O, and so H,(Z) = Z,, and H,(B) = B,,.
(iv) In Example 6.1(iv), we saw that every morphism f: A — B can be

viewed as the complex ©!(f) concentrated in degrees 1, 0:

() =s0->0-2 49 % o0,

with A term 1 and B term 0. Now d» = O implies imd, = 0, and dy = 0
implies ker dy = B; it follows that
ker f ifn=1,
H,(Z'(f)) = {coker f ifn =0,
0 otherwise. <

Proposition 6.8. If A is an abelian category, then H,: Comp(A) — A is
an additive functor for each n € 7.

Proof. In light of the Metatheorem on page 316, a consequence of Theo-
rem 5.99, Mitchell’s Full Imbedding Theorem, it suffices to prove this propo-
sition when A = Ab. We have just defined H, on objects; it remains to
define H, on morphisms. If f: (C,d) — (C’,d’) is a chain map, define
Ha(f): Hy(C) — H,(C') by

Hy(f): cls(zn) = cls(fuzn).
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We must show that f;,z, is a cycle and that H, (f) is independent of the choice
of cycle z,; both of these follow from f being a chain map; that is, from
commutativity of the following diagram:

dn+1 d,
Chy1 — Cp —> Cpy

fosr) i) -

First, let z be an n-cycle in Z,,(C), so that d,z = 0. Then commutativity of
the diagram gives d,, f,z = fu—1dnz = 0, so that f,z is an n-cycle.
Next, assume that z + B, (C) = y 4+ B,(C); hence, z — y € B, (C);

z—y =dpyic
for some ¢ € C,41. Applying f, gives

fnZ - fny = fndn—i-lc = d,/1+1fn+lc € Bn(c/)

Thus, cls(f,z) = cls(f,y), and H,(f) is well-defined.

Let us now see that H, is a functor. It is obvious that H,(1¢) is the
identity. If f and g are chain maps whose composite gf is defined, then for
every n-cycle z, we have (with obvious abbreviations)

Hy(gf): cls(z) = (gf)ncls(z)
= gn fn(cls(2))
= Hy(g)(cls(fn2))
= H,(g)Hu(f)(cls(2)).

Finally, H,, is additive: if f, g: (C,d) — (C’, d’) are chain maps, then

H,(f +g): cls(z) = (fn + gn) cls(2)
= cls(fuz + gn2)
= (Ha(f) + Hu(g)) cls(z). o

Proposition 6.8 says that if C is a complex in an abelian category A, then
H,(C) € obj(A) for all n; in particular, if A is the category of all sheaves of
abelian groups over a space X, then H, (C) is a sheaf. In this case, one often
denotes H,(C) by H,,(C).

Definition. We call H,(f) the induced map, and we usually denote it by
Jfnx, OF even by fi.
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The following elementary construction is fundamental; it gives a relation
between different homologies. The proof is a series of diagram chases, which
is legitimate because of the metatheorem on page 316. Ordinarily, we would
just say that the proof is routine, but, because of the importance of the result,
we present (perhaps too many) details; as a sign that the proof is routine, we
drop many subscripts.

Proposition 6.9. Ler A be an abelian category. If

0>C-5c >0

is an exact sequence in Comp(A), then, for each n € Z, there is a morphism
in A
On: Hy (C//) - Hn—l (C/)

defined by

O cls(z)) ClS(l’n__llann_IZ;/;)'

Proof. 'We will make many notational abbreviations in this proof. Consider
the commutative diagram having exact rows:

’ int1 DPn+1 "
0 Cot Cnt1 Coy1 —>0
d;/,+1 dny1 dr/z/+1
’ ‘n “on > "
0 C, Cn C, 0
dl dy d)
/ In—1 Pn—1 17
0 C -1 Cu_1 Cn—l — ()
~——

Let 77 € C/ and d"7" = 0. Since p, is surjective, there is ¢ € C, with
pc = 7. Now push ¢ down to dc € C,,_. By commutativity, p,_jdc =
d"p,c = d"7” = 0, so that dc € ker p,_1 = imi,_;. Therefore, there
is a unique ¢’ € C/ | with i,_ic’ = dc, for i, is an injection. Thus,

in__lldpn_lz” makes sense; that is, the claim is that

9, (cls(z")) = cls(c)

is a well-defined homomorphism.
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First, let us show independence of the choice of lifting. Suppose that
pn¢ = 7, where ¢ € C,. Then ¢ — ¢ € ker p, = imi,, so that there is
u' € C,, with i,u’ = ¢ — ¢. By commutativity of the first square, we have

in_1d'v =diau’ =dc —dc.
Hence, i~'dc — i7'd¢ = d'u’ € B/ |; thatis, cls(i~'dc) = cls(i™'d¢).
Thus, the formula gives a well-defined function

Z,— C,_,/B,

n—1-

Second, the function Z, — C};_I/Br/l_1 is a homomorphism. If z”, z/l/ IS
Z), let pc = 7" and pcy = 7. Since the definition of 9 is independent of the
choice of lifting, choose ¢ + ¢y as a lifting of z” 4 2. This step may now be
completed in a routine way.

Third, we show that if i, ¢’ = dc, then ¢ is a cycle: 0 = ddc = dic’ =
idc’, and so d’c¢’ = 0 because i is an injection. Hence, the formula gives a

homomorphism
7" = 7'/B = Hy,_i.
Finally, the subgroup B,/ goes into B, _,. Suppose that z” = d"c”, where
" eCy ., andlet pu = ", where u € Cy41. Commutativity gives pdu =
d’"pu = d’'c¢" = 7. Since 3(z”) is independent of the choice of lifting, we
choose du with pdu = z”, and so d(cls(z”)) = cls(i~'d(du)) = cls(0).
Thus, the formula gives a homomorphism 8, : H,(C") — H,_1(C’). e

Definition. The morphisms 9,,: H,(C") — H, _1(C’) are called connecting
homomorphisms.

The first question we ask is what homology functors do to a short exact
sequence of complexes. The next theorem is also proved by diagram chasing
and, again, we give too many details because of the importance of the result.
The reader should try to prove the theorem before looking at the proof.

Theorem 6.10 (Long Exact Sequence). Let A be an abelian category. If
0> -5cL =0

is an exact sequence in Comp(A), then there is an exact sequence in A

Ont1

> Hpt (€7 2 H () 25 Hy(C) 25 Hy(C) s Hy (€

Proof.  This proof is also routine and, again, it suffices to prove it when .4 =
Ab. Our notation is abbreviated, and there are six inclusions to verify.

(1) imi, C ker p, because pyix = (pi)x = 0, = 0.
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(ii) ker py C imiy: If pycls(z) = cls(pz) = cls(0), then pz = d"¢” for

some ¢” € C,/, ;. But p surjective gives ¢ = pc for some ¢ € Cy 1, 80
that pz = d” pc = pdc, because p is a chain map, and so p(z—dc) = 0.
By exactness, there is ¢’ € C,, with ic¢’ = z — dc. Now ¢’ is a cycle, for
id'c’ =dic’ = dz — ddc = 0, because z is a cycle; since i is injective,
d'c’ = 0. Therefore, i, cls(c’) = cls(ic’) = cls(z — dc¢) = cls(z).

@iii) im p, C kerd: If p,cls(c) = cls(pc) € im p,, then dcls(pz) =

cls(z), where iz’ = dp~'pz. Since this formula is independent of
the choice of lifing of pz, let us choose p~!pz = z. Now dp~'pz =
dz = 0, because z is a cycle. Thus, iz’ = 0, and hence 7 = 0, because
i is injective.

(iv) kerd C im py: If dcls(z”) = cls(0), then z’ = i ~'dp~'z" € B’; that

is, 7 = d'c’ for some ¢’ € C'. Butiz = id'¢ = dic = dp~'7’,
sothat d(p~'z"” —ic’) = 0; that is, p~'z” — ic’ is a cycle. Exactness

of the original sequence gives pi = 0, so that p,cls(p~ 'z —ic/) =

-1,/

cls(pp~1z" — pic’) = cls(Z”).

(v) imd C keri,: We have i,d cls(z”) = cls(iz’). Butiz' = dp~'z" € B;

that is, i,0 = 0.

(vi) keriy, € ima: If iycls(z) = cls(iz) = cls(0), then iz’ = dc for

some ¢ € C. Since p is a chain map, d’pc = pdc = pi7’ = 0, by
exactness of the original sequence, and so pcis acycle. But d cls(pc) =
cls~'dp~pec) = cls(i~lde) = cls(i~'iz') = cls(Z). e

Theorem 6.10 is often called the exact triangle because of the diagram

I

Ho(C).

Ho(C) H,(C)

Example 6.11. Let X be a topological space and let So(X) be its singular
complex. If G is an abelian group, we define Ho (X, G), homology of X with
coefficients G, to be the homology groups of the complex So(X) ®7z G. Given
a short exact sequence 0 —> G’ — G — G” — 0 of abelian groups, there
is a short exact sequence of complexes 0 — S,(X,G’) — S.(X,G) —
S.(X, G") — 0 [each S,,(X) is free, hence flat], and a long exact sequence

— Hy(X,G') — Hy(X, G) — Hy(X, G") — H,1(X.G') — -

In this case, the connecting homomorphism H, (X, G") — H,_1(X, G') is
called the Bockstein homomorphism. <
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Corollary 6.12 (Snake Lemma'). Let A be an abelian category. Given a
commutative diagram in Comp(A) with exact rows,

0 A’ A A" 0
fi lg ih
0 B’ B B” 0,

there is an exact sequence in A
0 — ker f — kerg — kerh — coker f — coker g — cokerh — 0.

Proof. If we view each of the vertical maps f, g, and /& as a complex con-
centrated in degrees 1, O [as in Example 6.1(iv)], then the given commutative
diagram can be viewed as a short exact sequence of complexes. The homol-
ogy of each of these complexes has only two nonzero terms: for example,
Example 6.7(iv) shows that the homology of the first column is H; = ker f,
Hy = coker f, and all other H,, = 0. The lemma now follows at once from
the long exact sequence. e

We have just proved that the Long Exact Sequence implies the Snake
Lemma; the converse is contained in Exercise 6.5 on page 338.

Theorem 6.13 (Naturality of 9). Let A be an abelian category. Given a
commutative diagram in Comp(A) with exact rows,

Oﬁcllﬁcicl/ﬁo

fi ig ih

04>A/4.>A7>A//4>0,
J
there is a commutative diagram in A with exact rows,

— H,(C) 2 H,(C) L+ H,(C") —% Hy_y(C) —

£ s - | -

— Hy(A)) == Hy(A) = Hy(A") —= Hy -1 (A) —-

Proof. Exactness of the rows is Theorem 6.10, while commutativity of the
first two squares follows from H,, being a functor. To prove commutativity
of the square involving the connecting homomorphism, let us first display the

IThe Snake Lemma is also called the Serpent Lemma.
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chain maps and differentials in one (three-dimensional!) diagram:

i

0 d C;l d Cn pd// C;l, 0
Yol  #,|e hy
0——=C,_ | —=Cy_1 —=C)_, 0
v e v
0 l% Al L» A, l» Al — —>
/5/ J /8 /5”
0——A 1—[_>An_17>A;1/ | ——0

If cls(z”) € H,(C”), we must show that f,dcls(z”) = 98'hycls(z”). Let
¢ € Cy, be a lifting of z”; that is, pc = z’. Now 0 cls(z”) = cls(z’), where
iz’ = dc. Hence, f,dcls(z”) = clscls(fz’). On the other hand, since 4 is a
chain map, we have ggc = hpc = hz”. In computing 9’ cls(hz”), we choose
gc as the lifting of hz”. Hence, 3’ cls(hz”) = cls(u’), where ju' = Sgc. But
jfz = giz = gdc = 8gc = ju',and so fz' = u’, because j is injective. e

Remark. One advantage of having worked in an abelian category is that
we can now give a conceptual proof of Theorem 6.13. (Homology in abelian
categories will also be very useful when we discuss sheaf cohomology.)

Let A be an abelian category, and let D be the category having exactly
two objects, * and e, and only one nonidentity morphism, % — e. Since D is
a small category, the functor category AP is also abelian, by Proposition 5.93
(AP is often called an arrow category). Of course, objects in AP are mor-
phisms in A, while a morphism f — g in AP is an ordered pair («a, 8) of
morphisms in .4 making the following diagram commute.

A#A/

1)

/7
B 5 B
Naturality of the connecting homomorphism may be restated. A 2 x 3 com-
mutative diagram in Comp .4 with exact rows can be viewed as a short exact
sequence in Comp A", and the corresponding Long Exact Sequence in AP,
when viewed in A, is the usual “ladder” diagram in homology. The proof
of Theorem 6.13 shows that the connecting homomorphism in A? is just the
ordered pair (9, 3") of connecting homomorphisms in 4. <«

There are interesting maps of complexes that are not chain maps.

Definition. Let C and D be complexes, and let p € Z. A map of degree p,
denoted by s: C — D, is a sequence s = (s,,) with s, : C,, — D, forall n.
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For example, a chain map is a map of degree 0, while the differentials of
(C,d) formamap d: C — C of degree —1.
We now introduce a notion that arises in topology.

Definition. Chain maps f, g: (C,d) — (C’,d’) are homotopic,> denoted
by f =~ g, if, for all n, there is a map s = (s,): C — C’ of degree +1 with
Jfo—8n = d,’H_lsn + s,_1d,.

dn+l dn

Cn+l C, Chi
ff 0 T e
Cri i C, 7 Ch

A chain map f: (C,d) — (C',d') is null-homotopic if f ~ 0, where 0 is
the zero chain map.

Theorem 6.14. Homotopic chain maps induce the same morphism in ho-
mology: if f,g: (C,d) — (C',d") are chain maps and f =~ g, then for all
n,
f*n = 8xn - H,(C) — Hn(c/)~
Proof. If z is an n-cycle, then d,z = 0 and
Snz — gnz = dr/H—lan + Sp—1dpz = d,/1+1an~

Therefore, f,z — guz € B, (C'), and SO fup = gun. ®

Definition. A complex (C, d) has a contracting homotopy if its identity 1¢
is null-homotopic. A complex C is contractible® if its identity 1 = 1¢ is
null-homotopic; that is, there is s : C — C of degree +1 with 1 = sd + ds.

Proposition 6.15. A complex C having a contracting homotopy is acyclic;
that is, it is an exact sequence.

Proof.  We use Example 6.1(i). Now 1¢: H,(C) — H,(C) is the identity
map, while 0,: H,(C) — H,(C) is the zero map. Since 1¢ =~ 0, however,
these maps are the same. It follows that H,(C) = {0} for all n; that is,
kerd, = imd, 4 for all n, and this is the definition of exactness. e

ZRecall that two continuous functions f, g: X — Y are called homotopic if there exists
a continuous F: X x I — Y, where I = [0, 1] is the closed unit interval, with F(x, 0) =
f(x)and F(x,1) = g(x) for all x € X. If f and g are homotopic, then their induced
maps are equal: fi = g«: Hy(X) — H,(Y). The algebraic definition of homotopy given
here has been distilled from the proof of this topological theorem.

3A topological space is called contractible if its identity map is homotopic to a constant
map. A contractible space has the same homotopy type as a point.
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Exercises

*6.1 If C is a complex with C,, = {0} for some n, prove that H,(C) =
{0}.
6.2 Prove that isomorphic complexes have the same homology: if C and
D are isomorphic, then H,(C) = H,(D) foralln € Z.
6.3 If f = (f,): C — D is achain map, prove, for all n € Z, that

JniZn(C) € Z,(D) and [, Ba(C) S By (D).

*6.4 (i) If P and P’ are projective resolutions of a module A with
syzygies K, and K, for all n > 0, prove that there are
projective modules Q,, Q) with K, & Q), = K, & Q,.

Hint. Schanuel’s Lemma.

(ii) If one projective resolution of a module A has a projective
nth syzygy, prove that the nth syzygy of every projective
resolution of A is projective.

*6.5 This exercise shows that the Snake Lemma implies Theorem 6.10
(so this theorem should not be used in solving this problem).
Consider the commutative diagram with exact rows (note that two
zeros are “missing” from this diagram):

A—=B-2sCc—>0

ST

0—A"— B — (.
l

(i) Prove that A: kery — coker«, defined by

1

A:z i 1pTlz 4+ ima,

is a well-defined homomorphism.
(ii) Prove that there is an exact sequence

A i/
kera — ker B — ker y —= coker o — coker 8 — coker y,
where i’: @’ + ima > ia’ +im B fora’ € A’.
(iii) Given a commutative diagram with exact rows,

0 A A, Al 0

n

d ¢ \Ldn W

/ 1
00— An—l — Ay — An—l

—0,
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prove that the following diagram is commutative and has
exact rows:

AL /imd, | — An/imdy,41 — A/ imd!!

n+1
v | o

0 —=kerd | ——kerd,_| ——kerd]_,.

-0

(iv) Use part (ii) and this last diagram to give another proof of
Theorem 6.10, the Long Exact Sequence.
6.6 Let f, g: C — C’ be chain maps, and let F: C — C’ be an additive
functor. If f ~ g, prove that Ff ~ Fg; that is, if f and g are
homotopic, then F f and Fg are homotopic.

#6.7 Let 0 - C' —> C -2 C” — 0 be an exact sequence of com-

plexes in which C’ and C” are acyclic; prove that C is also acyclic.
6.8 Let R and A be rings, and let 7: gRMod — 4Mod be an exact
additive functor. Prove that 7 commutes with homology; that is, for
every complex (C,d) € rComp and for every n € Z, there is an
isomorphism
H,(TC,Td) = TH,(C,d).

*6.9 (i) Prove that homology commutes with direct sums: for all n,
there are natural isomorphisms

H, (EB C“) = (P Ha(C).

(ii) Define a direct system of complexes (CHier., ((p;)ii j» and
prove that 11_n>1 C! exists.

(i) If (C)iey, ((p;'.)ii j 1s a direct system of complexes over a
directed index set, prove, for all n > 0, that

Hy (lim ) = li_l)an(Ci).

*6.10 Assume that a complex (C, d) of R-modules has a contracting ho-
motopy in which the maps s, : C,, — C,41 satisfying

ICn = dp+15n + Sp—1dy

are only Z-maps. Prove that (C, d) is an exact sequence.
*6.11 (Barratt—Whitehead). Consider the commutative diagram with ex-
act Tows:

i 9
— A, ‘n>Bn g'Cn ‘;An—l —B, 1 —C1 —

fni, ‘Lgﬂ ‘Lh" \Lfnfl J/gn—l i/hnfl

—C/

n—1 :

/ / / ’ /
eAnTBnﬁcnﬁAnfléanl
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If each £, is an isomorphism, prove that there is an exact sequence

4, Y A @ B, S B

Iy Lan
n

An—1

— A,_,®B,_1 > B,_| —,
where
(fusin): an = (fuan, inay) and j, — g : (a’/17 bp) jna;l — &gnbn.

*6.12 (Mayer-Vietoris). Given a commutative diagram of complexes with
exact rows,

0—C —>C—>¢C"—=0

RN

0‘>A/‘.>A7A”‘>O,
J
if every third vertical map £, in the diagram

- H,(C)) 2 H,(C) L H,(C") = Hy_y (C) —

£ s - |5

— H,(A) —> Hn(A) == Hy (A") —= Hy—1(A) —

is an isomorphism, prove that there is an exact sequence

- H,(C') > H,(A") ® H,(C) > H,(A) - H,_;(C') > -

6.2 Derived Functors

In order to apply the general results in the previous section, we need a source
of short exact sequences of complexes. The idea is to replace every module by
a deleted resolution of it; given a short exact sequence of modules, we shall
see that this replacement gives a short exact sequence of complexes. We then
apply either Hom or ®, and the resulting homology modules are called Ext or
Tor.

We know that a module has many presentations; since resolutions are
generalized presentations, the next result is fundamental.

Theorem 6.16 (Comparison Theorem). Let A be an abelian category.
Given a morphism f: A — A’ in A, consider the diagram

dy d &

Py Py Po A 0
\ ! |
| L fi ! fo if
v v v
/ /
P; P, P, A’ 0,
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where the rows are complexes. If each P, in the top row is projective, and if
the bottom row is exact, then there exists a chain map f Py — P’A, making
the completed diagram commute. Moreover, any two such chain maps are
homotopic.

Remark. The dual of the comparison theorem is also true. Given a mor-
phism g: A’ — A, consider the diagram of negative complexes

0 A EO El E2
A A A
gT [ \ [
[ \ [

0 A X0 X! X2

If the bottom row is exact and each E” in the top row is injective, then there
exists a chain map X* — EA making the completed diagram commute. <«

Proof.  Again, it suffices to prove the result when A = Ab.

(i) We prove the existence of fn by induction on n > 0. For the base step
n = 0, consider the diagram

B &'
fo/ < J/fg
~
Fy—= A" —0.

Since ¢’ is surjective and Py is projective, there is a map fo: Py — P
with &’ fo = fe. For the inductive step, consider the diagram

dn+1
Pyi) — Py —> Py

fni i/fn—l
/

/
Pn+1 d P, d Pn—l
n+1 n
If im f,, 1 € imd’ 41- then we have the diagram
f Pn+l
n+l - v
i - \Lﬁldﬂ+1
/
P — imd) 4 —0,

n+1

afld projectivity of P,y gives fu11: Pyp1 — P, 41 With Y/H_lfnﬂ =
fndn+1. To check that the inclusion holds, note that exactness at P, of
the bottom row of the original diagram gives im d’ w1 = ker d),, and so it
suffices to prove that d;, fadns1 = 0. But d), Fodni1 = fu_idpdys1 = 0.
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(ii) We prove uniqueness of f to homotopy. If h: P4 — P4 is another
P q Py

chain map with ¢’hg = f&, we construct the terms s, : P, — Pri 4 ofa
homotopy s by induction on n > —1; that is, we will show that

B — fo = d)y S0+ Sn_1dy.

For the base step, first view A and {0} as being terms —1 and —2 in the
top complex, and define dy = ¢ and d_; = 0. Also, view A’ and {0} as
being terms —1 and —2 in the bottom complex, and define d6 = ¢’ and

d’ | = 0. Finally, define f-y = f = h_j and s_ = 0.

d do=¢ d_,

Py Py - A 0
% 7 11 /o
e hou« s |
P P/ ’
Uoa” 0= A d 0

With this notation, definings_; = O givesh_| — f_1 = f — f =0 =
d(/)s_1 +s_pd_;.

For the inductive step, it suffices to prove, for all n > —1, that
im(p 1 — fasrt — Sudur)) S imd),,,

for then we have a diagram with exact row

Pn+1
e
Sn+1 ~ v
/ - hpt1= fu+1—Sndn+1
~
. /
2> imd,
n+2

Pri 2%—0’

+ +

and projectivity of P, gives a map s,41: Ppy1 — P, 4o satisfying
the desired equation. As in the proof of part (i), exactness of the bottom

row of the original diagram gives imd, _, = kerd, |, and so it suffices

to prove dr/l+1(hn+1 — fn+1 — Spdp11) = 0. But

)y (M1 = fast = Sudns1) = djoy (gt — fas) = diySuds
=d (has1 — fur1) = (hy — fu — Su—1dn)dys1
=d), (hut1 — fur1) = (hn — f)dns1,
and the last term is O because 4 and f are chain maps. e

We introduce a term to describe the chain map f just constructed.
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Definition. If f: A — A’ is a morphism and P4 and P;v are deleted pro-
jective resolutions of A and A’, respectively, then a chain map f Py — P,
is said to be over f if f& = &’ fy.

d d
P, 2 Py ! Py £ A 0
Y Y Y
P/ P/ P/ ’
2 T Ty A 0

Given a morphism f: A — A’, the comparison theorem implies that a
chain map over f always exists between deleted projective resolutions of A
and A’; moreover, such a chain map is unique to homotopy.

6.2.1 Left Derived Functors

In Algebraic Topology, we apply the functor L1 ®z G, for an abelian group G,
to the singular complex S, (X) of a topological space X to get the complex

0y 1 n
S S (X)) ®G6 MR X)) ©G6 "2 S, (086 .

The homology groups H,, (X, G) = H,(S¢(X) ®z G) are called the homol-
ogy groups of X with coefficients in G, as we have seen in Example 6.11.
Similarly, applying the contravariant functor Hom([J, G) gives the complex

a A
< Hom(S,+1(X), G) <~ Hom(S,(X), G) i Hom(S,,_1(X), G) «;

its homology groups H" (X, G) are called the cohomology groups of X with
coefficients in G. This last terminology generalizes. If a contravariant functor
T is applied to a complex C, then many of the usual terms involving the com-
plex T'C acquire the prefix “co” and all indices are raised. For example, one
has n-cochains C" = T (C,), n-cocycles Z" (T C), n-coboundaries B" (T C),
nth cohomology H" (T C), and induced maps f*. Originally, the left derived
functors L, T were called homology when T is a covariant functor, and the
right derived functors R"T were called cohomology when T is contravari-
ant.* Unfortunately, this clear distinction is blurred because the Hom functor
is contravariant in one variable but covariant in the other. As a result, derived
functors of any variance which involve Hom are often called cohomology.

Given an additive covariant functor 7: A — C between abelian cate-
gories, where .4 has enough projectives, we now construct its left derived

“4In their book Homology Theory, Hilton and Wylie tried to replace cohomology by
contrahomology, but their suggestion was not adopted.
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functors L,T: A — C, for all n € Z (we will construct right derived func-
tors afterwards). The definition will be in two parts: first on objects; then on
morphisms.

Choose, once and for all, one projective resolution

d. d
P=—>P-2P -5 pP-5A-0

for every object A (thus, the chosen projective resolution of A is the analog
of the singular complex of a space X, but it is more fruitful to regard it as a
presentation of A). Form the deleted resolution P4, then form the complex
TP, (as in Example 6.6), take homology, and define

(LaT)A = Hy(TPy).

Let f: A — A’ be a morphism. By the comparison theorem, there is a
chain map f: P4 — P, over f. Then T f: TPy — TP/, is also a chain
map, and we define (L, T)f: (L,T)A — (L,T)A’ by

(LaT)f = Ho(T f) = (T [
In more detail, if z € ker T'd,,, then
(LyT)f: z+imTdys1 > (T fi)z +imTd), ;

that is,
(LaT) f: cls(z) — cIs(T fy2).

In pictures, look at the chosen projective resolutions:

P P Py A 0
| I |
| \ | !
\ N
P} Pl Py g} —— 0

Fill in a chain map f over f, delete A and A’, apply T to this diagram, and
then take the map induced by 7'f in homology.

Theorem 6.17. [If T: A — C is an additive covariant functor between
abelian categories, where A has enough projectives, then L,T: A — C is an
additive covariant functor for every n € Z.

SWe will see, in Proposition 6.20, that the definition does not depend on the choice of
projective resolution.
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Proof. 'We will prove that L, T is well-defined on morphisms; it is then rou-
tine to check that it is an additive covariant functor [remember that H,, is an
additive covariant functor Comp(A) — AJ.

If h: P4 — P/, is another chain map over f, then the comparison theo-

rem says that h =~ f ; therefore, Th >~ T f , by Exercise 6.6 on page 339, and
so H,(Th) = H,(T f), by Theorem 6.14. e

Here is a useful computation of an induced map when A = gpMod. Recall
that if r € Z(R) and A is a left R-module, then multiplication by r, denoted
by 1 A — A, is an R-map. We say that a functor 7: pMod — rMaod, of
either variance, preserves multiplications if, forallr € Z(R), T (u,): TA —
T A is also multiplication by r. For example, tensor product and Hom preserve
multiplications.

Proposition 6.18. If T: pMod — gMod is an additive functor that pre-
serves multiplications, then L,T: gpMod — gMod also preserves multipli-
cations.

. . . d ..
Proof. Given a projective resolution — P = p 5 A > 0,itis easy
to see that /& is a chain map over u,, where every [, : P, — P, is

P & P & Py—=A 0
%) \L \lell i o \L”r
Py—= P — =P —>A 0,

multiplication by r. Since T preserves multiplications, the terms 7 fi, of the
chain map T/t are also multiplication by r, and so the induced maps in ho-
mology are multiplication by 7:

(T« cls(zn) = cIs((T fin)zn) = cls(rz,) = rcls(zy),

where z,, € kerTd,,. e

Definition. Given an additive covariant functor 7': A — C between abelian
categories, where A has enough projectives, the functors L, T are called the
left derived functors of T .

Proposition 6.19. IfT: A — C is an additive covariant function between
abelian categories, then (L,T)A = 0 for all negative n and for all A.

Proof. By Exercise 6.1 on page 338, we have (L,7)A = 0 because the nth
term of P4 is O when 7 is negative. e

The functors L, T are called left derived functors because of the last
proposition. Since L,7 = 0 on the right, that is, for all negative n, these
functors are of interest only on the left; that is, for n > 0.
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Definition. If B is a left R-module and T = [0 ® B, define

Tor®(O, B) = L, T.

d d
Thus, if P = > P, —> P| —> P, —£5 A — 0is the chosen projective
resolution of a right R-module A, then

ker(d, ® 1p)

Tor, (A, B) = Hy(Ps ®g B) = —————=—.
or, ( ) n(Pa®r B) im(d,+1 ® 1p)

The domain of Tor,lf (O, B) is Modg, the category of right R-modules,
and its target is Ab [if B is an (R, §)-bimodule, then the target is Modg].
In particular, if R is commutative, then A ® g B is an R-module, and so the
values of Tor,’le (U, B) lie in xkMod.

We can also form the left derived functors of A ® g [J, obtaining functors
rMod — Ab.

Definition. If A is a right R-module and T = A @z [, define

tor®(A,0) = L, T.

d d
Thus, if Q = - 0> N 01 BN Qo . B — 0is the chosen projective
resolution of a left R-module B, then

ker(lA 02y dn)

torX (A, B) = H,(A ®g Qp) = MA@ dres)
n+

One nice result of Homological Algebra is Theorem 6.32 on page 355:
for all left R-modules A, all right R-modules B, and all n > 0,

Tor® (A, B) Z torf (A, B).

Thus, the notation tor,lf (A, B) is only temporary.
The definition of L, T assumes that a choice of projective resolution of
every module has been made. Does L, T depend on this choice?

Proposition 6.20. Let A be an abelian category with enough projectives.
Assume that new choices P 4 of deleted projective resolutions have been made,
and denote the left derived functors arising from these new choices by L, T.

If T: A — C is an additive covariant functor, where C is an abelian
category, then the functors L,T and Zn T, for each n > 0, are naturally
isomorphic. In particular, for all A, the objects

(L,TYA = (L,T)A

are independent of the choice of projective resolution of A.
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Proof.  Consider the diagram

P P Py

where the top row is the chosen projective resolution of A used to define
L, T and the bottom is that used to define Zn T. By the comparison theorem,
there is a chain map ¢: P4 — ﬁA over 14. Applying T gives a chain map
Ti: TP4 — TﬁA over T'14 = 174. This last chain map induces morphisms,
one for each n,

A = (T0w: (Ly,T)A — (L, T)A.

We now prove that each 74 is an isomorphism (thereby proving the last
statement in the theorem) by constructing its inverse. Turn the preceding di-
agram upside down, so that the chosen projective resolution P4 — A — 0
is now the bottom row. Again, the comparison theorem gives a chain map,
say, K : I~’A — P4. Now the composite «¢ is a chain map from P4 to itself
over 14. By the uniqueness statement in the comparison theorem, «t 2>~ 1p, ;
similarly, i« >~ 15 . It follows that T' (k) =~ lTﬁA and T (ki) ~ 17p,. Hence,
L ma = Tu)s = (TO«(Ti)s and 1,14 = (Tk)sx = (Tk)x(T0)x.
Therefore, 14 = (T't), is an isomorphism.

We now prove that the isomorphisms t4 constitute a natural isomorphism;
thatis, if f: A — B is a morphism, then the following diagram commutes.

(L T)A —"> (L,T)A
L1 | @y
(LaT)B — (L,T)B

To evaluate in the clockwise direction, consider

Py Py A 0
i

Py Py A 0
%

0, Qo B 0,

where the bottom row is the new chosen projective resolution of B. The com-
parison theorem gives a chain map P4 — Qp over f14 = f. Going counter-
clockwise, the picture will now have the original chosen projective resolution
of B as its middle row, and we get a chain map P4 — Qp over 1pf = f.
The uniqueness statement in the comparison theorem tells us that these two
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chain maps are homotopic, and so they induce the same morphism in homol-
ogy. Thus, the appropriate diagram commutes, showing thatt: L,T — L,T
is a natural isomorphism. e

Corollary 6.21. The modules Tor,lf (A, B) are independent of the choice of
projective resolution of A, and the modules tor,lf (A, B) are independent of the
choice of projective resolution of B.

Proof.  Both Tor,’f (4, B) and tor,’f (A, O) are left derived functors, and so
Proposition 6.20 applies to each of them. e

Corollary 6.22. Let T: gRMod — sMod be an additive covariant functor.
If P is a projective module, then (L,T)P = {0} for all n > 1. In particular,
if A and P are right R-modules with P projective, and if B and Q are left
R-modules with Q projective, then for alln > 1,

TorR(P, B) = (0} and torR(A, Q) = {0}.

Proof. Since P is projective, a projective resolution is P, the complex with
1p concentrated in degrees 0, —1. The corresponding deleted projective res-
olution Pp is QO(P), the complex with P concentrated in degree 0. Hence,
TPp has nth term {0} for alln > 1, and so (L,T)P = H,(TPp) = {0} for
all n > 1, by Exercise 6.1 on page 338. e

Corollary 6.23. Let A be an abelian category with enough projectives. Let
dy dy e
P=—- P —>P — Ph—A—0

be a projective resolution of A € obj A. Define Ko = kere, and define
K, =kerd, foralln > 1. Then

(Ln+lT)A = (LnT)Ko = (Ly—1T)K, =...= (L1 T)Ky—1.
In particular, if A = Mody and B is a left R-module,
TorX, | (A, B) = TorX (Ko, B) = - - = Tor{ (K,—1, B).
d} /
Similarly, if A is a right R-module, let P’ = — P| - Py <5 B >0
be a projective resolution of a left R-module B, and define Vy = kere' and

V, =kerd), foralln > 1. Then

tors (A, B) = torf (A, Vo) = -+ = tor{ (A, V—1).
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Proof. By exactness of P, we have Ky = kere = imdj, and so

d d
Q:—>P2—2>P1—1>K0—>0

is a projective resolution of Ky if we relabel the indices; replace each n by
n — 1, and define Q,, = P, and §,, = d,,4 for all n > 0. Since the value
of L, T on a module is independent of the choice of projective resolution, we
have

ker T,
im T3n+1

_ ker Tdy 1
o im Tdn+2

(LnT)KO = Hn(TQKO) =
= Hy+1(TP4) = (Lyt1T)A.

The remaining isomorphisms are obtained by iteration. e

We are now going to show that there is a long exact sequence of left
derived functors. We begin with a useful lemma; it says that if we are given
a short exact sequence 0 —- A’ — A — A” — 0 as well as projective
resolutions of A’ and A”, then we can “fill in the horseshoe”; that is, there is
a projective resolution of A that fits in the middle.

Proposition 6.24 (Horseshoe Lemma). Given a diagram in an abelian cat-
egory A with enough projectives,

) !

P Py
) l
P, Py
/| -
0 A —A A" 0,
i q

where the columns are projective resolutions and the row is exact, then there
exist a projective resolution of A and chain maps so that the three columns
form an exact sequence of complexes.

Remark. The dual theorem, in which projective resolutions are replaced by
injective resolutions, is also true. <«
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Proof. 'We show first that there are a projective Q¢ and a commutative 3 x 3
diagram with exact columns and rows:

0 0 0

v v \
0%—K6‘>VO‘>K6/‘>O

ooy
0‘>P(;‘O>QOQ>P(;/‘>O

e/i/ ‘ng/o- ¢8//

0—=A' —=A—>A"—0

v v v

0 0 0

Define Qo = Pj @ P; it is projective because both Pj and Py are projective.
Define io: Py — Py @ Py by x’ = (x',0), and define qo: Py & Py — P
by (x’, x”) = x”. It is clear that

0— P} —% 0o 2% P/ >0

is exact. Since P is projective, there existsamap o : P — A withgo = ¢”.
Now define ¢: Qg — Abye: (x',x”) — ie’x’ + ox” (the map o makes the

square with base A Ay commute). Surjectivity of ¢ follows from the
Five Lemma. It is a routine exercise that if Vp = ker ¢, then there are maps
K\ — Ko and Ko — K (where K, = ker&’ and K| = ker¢”), so that the
resulting 3 x 3 diagram commutes. Exactness of the top row is Exercise 2.32
on page 96.

We now prove, by induction on n > 0, that the bottom n rows of the
desired diagram can be constructed. For the inductive step, assume that the
first n steps have been filled in, and let V,, = ker(Q, — Qn—1), while K|, =
kerd), and K, = kerd,/. As in the base step, there is a commutative diagram
with exact rows and columns.

0 0 0

v Y \
()‘>K}/H_1 — Vi1 — Kl/1/+1 —0
0— Py ry Qui1 = Py —=0

dyyr ¥ \L‘S”“ Vi

0 K Va K 0

v v \

0 0 0

Now splice this diagram to the nth diagram by defining §,4+1: Qn+1 — On
as the composite Q41 — V, = O, @
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Corollary 6.25. Let0 - A" — A — A” — 0 be an exact sequence of
left R-modules. If both A’ and A" are finitely presented, then A is finitely
presented.

Proof. There are exact sequences 0 — K; — Pj — A" — Oand 0 —
Kj — P{ — A" — 0, where Pj, P, K/, Pj are finitely generated and
Pj. Py are projective. As in the beginning of the proof of Proposition 6.24,
there is a 3 x 3 diagram, with Qg projective, whose rows and columns are
exact.

0 0 0

v v \
0‘>K(,)‘>V04>K(/)/‘>O

v J \

0— Pj— Qo—= P} —0
v v \
0—A —A—=A"—0
v v v
0 0 0

Both Qq and Vj are finitely generated, being extensions of finitely generated
modules, and so A is finitely presented. e

Theorem 6.26. Given a commutative diagram of right R-modules having
exact rows,

0 A A L gy 0
A
0 ' ——>C c” 0,
Jj q

there is a commutative diagram with exact rows for every left R-module B,

i * an
TorR (A’, B) == TorR (A, B) 2 TorR (A", B) —> Tor®_,(A’, B)

A |+ In. I

Tor®(C’, B) e Tor®(C, B) e Tor®(C”, B) — Tor® (C', B).

The similar statement for tor,’f (A, O) is also true.

Proof. Exactness of 0 — A" — A — A” — 0 gives exactness of the
sequence of deleted complexes 0 — Py — P4 — Py — 0. f T =
U®g B,then0 — TPy — TP4 — TP, — 0 is still exact, for every row
splits because each term of P4~ is projective. Therefore, the naturality of the
connecting homomorphism, Theorem 6.13, applies at once. e

We now show that a short exact sequence gives a long exact sequence of
left derived functors.
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Theorem 6.27. Let A be an abelian category with enough projectives. If
0> A -5 ALy A 5 0isan exact sequence in Aand T: A — C is
an additive covariant functor, where C is an abelian category, then there is a

long exact sequence in C

N (LnT)A/ (L,T)i (L T)A( nT)p (L T)A// O

L, L,_ 0y —
Lo DA D A D (L, A 2

which ends with
— (LoT)A' — (LoT)A — (LoT)A" — 0.

Proof. Let P’ and P” be the chosen projective resolutions of A" and A”,
respectively. By the Horseshoe Lemma, there is a projective resolution P of
A with

J o5 4
0—-Py—Py—P, >0

Here, j is a chain map over i and ¢ is a chain map over p. Applying T gives
the sequence of complexes

Tj .~ T
0— TP 4 —5 TP, =5 TP}, — 0.
This sequence is exact, for each row 0 — P, — r IS N P} — 0is a split
exact sequence (because P, is projective), and additive functors preserve split
short exact sequences.® There is thus a long exact sequence

( ])* (T q)*

— Hy (TP, % 1, (7P "L B, (TP, 2 H, (TP, —;

that is, there is an exact sequence

S L, DA I Toma T (L, TyA” s (L, THA =

The sequence does terminate with O, for L_;T is zero for all negative n, by
Proposition 6.19. ~

We do not know that P4 arises from the projective resolution of A origi-
nally chosen, and so we must change it into the sequence we seek. There are
chain maps «: P4 — PA and A: P4 — P4, where both «, A are chain maps
over 14 in opposite directions. Indeed, as in the proof of Proposition 6.20,
TxTh and TAT k are chain maps over 174 in opposite directions, whose in-
duced maps in homology are isomorphisms; in fact, (T 1), : L,T — L,T is

The exact sequence of complexes may not split, because the sequence of splitting

maps need not constitute a chain map P’/ A > P A-
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the inverse of (Tk),. Now i is a chain map over i, and p is a chain map over
p, while k, A are chain maps over 14.
The diagram displaying these chain maps is not commutative!

J ~ q
PTA/ HPA HPNN

Nl A

P
Consider this diagram after applying 7" and taking homology.

e Hy (TP 2 g (7B ) 2 H (TP, ——

S (Th)s | | (T g
(Ti)« (Tp)«

Hn(TPA)

The noncommutative diagram remains noncommutative after applying 7', but
the last diagram is commutative. Now TATj =~ Tzv', because both are chain
maps TP,, — TPy over Ti; hence, (TATj)y = (Tzv')*, because homotopic
chain maps induce the same homomorphism in homology. But (TATj), =
(T2)«(Tj)x, and so

(TA)(Tj)s = (Ti)s = (L T)i.
Similarly, (Tq)«(T«)x = (T p)« = (L,T) p. The proof that

A, (L,T)i (L, T)p

(L,T) (L,T)A 25" (L, T)A”

is exact can be completed using Exercise 6.14 on page 376. e

Corollary 6.28. If T: gkMod — sMod is an additive covariant functor,
then the functor LoT is right exact.

Proof. A — B — C — 0 is exact, then (LoT)A — (LoT)B —
(LoT)C — Oisexact. e

Theorem 6.29.

(1) If an additive covariant functor T : A — B is right exact, where A, B
are abelian categories and A has enough projectives, then T is natu-
rally isomorphic to LoT.

(i1) The functor D ®g B is naturally isomorphic to Torg (4, B), and the

functor A @g U is naturally isomorphic to tor(lf (A, Q). Hence, for all
right R-modules A and left R-modules B, there are isomorphisms

Torf (A, B) = A®g B = torX (A, B).
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Proof.

d
(i) LetP=— Py N Py 5 A — 0 be the chosen projective resolution
of A. By definition, (Lo7T)A = coker T'd;. But right exactness of T
gives an exact sequence

d
P, A TRy 5 TA 0.

Now T'¢ induces an isomorphism o4 : coker Td; — T A, by the First
Isomorphism Theorem; that is,

coker Td; = TPy/imTd; = TPy/kerTe —% imTe = TA.
It is easy to prove that 0 = (04) AcobjModg): LoT — T is a natural

isomorphism.

(i1) Immediate from part (i), for both [J ® g B and A ® [J are additive
covariant right exact functors. e

Corollary 6.30. If 0 - A" — A — A” — 0 is a short exact se-
quence of right R-modules, then there is a long exact sequence for every left
R-module B,
— TorX(A’, B) — TorR(A, B) — Tork (A", B)
— Torf (A, B) — TorR (A, B) — Torf(A”, B)
—>A/®RB—>A®RB—>A//®RB—>O.
The similar statement for tor,’f (A, O) is also true.

Thus, the Tor sequence repairs the loss of exactness after tensoring a short
exact sequence.

‘We now prove that Tor and tor are the same, and we begin with a variation
of the Snake Lemma.

Lemma 6.31. Given the commutative diagram with exact rows and columns
in an abelian category A,

ker f —=0 ker h

4o

kera ! L —2= M N’ 0

S T

0 L M N 0
o
kerb L M N 0

ool

0 0 0,
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then ker f = kera and ker h = ker b.

Proof.  Apply the version of the Snake Lemma in Exercise 6.5 on page 338
(with two “missing” zeros) to the maps f, g, &, obtaining exactness of

ker g — kerh — coker f — cokerg.

Now kerg = {0}, coker f = L”, cokerg = M”, and we may assume

coker f — coker g is b (as in Exercise 6.5). Thus, 0 — kerh — L” om
is exact, and we conclude that ker i = ker b.

We may assume that i and j are inclusions. Commutativity of the square
with corner kera gives fj = 0; that is, kera = imj C ker f = imi;
commutativity of the square with corner ker f gives ai = 0; that is, ker f =
imi C kera = im j. Therefore, imi = im j and ker f = kera. e

Theorem 6.32. Let A be a right R-module, let B be a left R-module, and let

’

P=—>P1i>P0—€>A—>O and Q=—>Q1—1>Q0L>B—>O

be projective resolutions. Then H,(Po®r B) = H,(A®Qr Qp) foralln > 0;
that is,

TorR(A, B) = tor® (A, B).

Proof.  (A. Zaks) The proof is by induction on n > 0. The base stepn = 0
is true, by Theorem 6.29(ii). Let us display the syzygies of P by “factoring”
it into short exact sequences:

NN\

There are exact sequences 0 — K; — P; — K;—1 — Oforalli > 0if we
write A = K_1 (sothat 0 - Ko — Py — A — 0 has the same notation as
the others). Similarly, we display the syzygies of Q by factoring it into short
exact sequences 0 — V; — Q; — V;_; — Oforall j > 0. Since tensor
is a functor of two variables (see Exercise 2.35 on page 96), the following

P()4>A4>0.



356 HomMmoLoGYy CH. 6

diagram commutes for each i, j > 0.

X—0 w
i

i }

Y —Ki®V, —Ki®Q;, —=Ki®V;_ 1 —0

Lo J i

()—)Pi®Vj—>Pi®Qj—>Pi®Vj_1—>()

i ! i

Z—=Ki 1®V; =K 1®0; =K 1®Vj_1 >0
| } |
0 0 0

The rows and columns are exact because tensor is right exact; the modules
W, X, Y, Z are, by definition, kernels of obvious arrows. Zeros flank the mid-
dle row and column because P; and Q; are flat (they are even projective).
Now W = Tor{(K;_1, Vj—1), X = Tor(K;_1, V), Y =tor|(K;, V;_1), and
Z =tor1(K;_1, Vj—1). By Lemma 6.31, we conclude, for all i, j > —1,
Tory (K;—1, Vj—1) = tor;(K;—1, Vj—1).

Ifi =0 = j, then Tor (A, B) = tor| (A, B) because K_; = Aand V_; = B.
The theorem has been proved for n = 1.

We now prove the inductive step. Corollary 6.23 gives

tor,+1(A, B) = tory (A, V,—1) = tor| (K_1, V,,_1),
Tor,+1(A, B) = Tor{(K,—1, B) = Tor{ (K,,—1, V_1).
Use these isomorphisms and the isomorphism X = Y i.e.,
Tori (K1, V;) = tor(K;, Vj_1).
To go from any equation to the one below it, use the theorem for n = 1:
tor,4+1(A, B) = tor1(K_1, V,,—1);
Tor; (K—1, Vy—1) = tor; (Ko, Vp—2);
Tor; (Ko, Vp—2) = tor1 (K1, Vn-3);

Tori (K2, Vo) = tor1(Ky—1, V-1);
Tory (Ky—1, V-1) = Tor,41(A, B). e

This last proof is ingenious; we will give a straightforward proof of the
theorem once we have spectral sequences.

Remark. The fact that the proof of Theorem 6.32 uses only the flatness of
the terms in a projective resolution suggests that Tor can be defined using flat
resolutions. See Theorem 7.5 for a proof of this. <«
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6.2.2 Axioms

Here is a set of axioms characterizing the sequence of functors Tor® (CJ, M).

Theorem 6.33 (Axioms for Tor). Let (T,,: Modr — Ab),>0 be a se-
quence of additive covariant functors. If,

(1) for every short exact sequence 0 —- A — B — C — 0 of right
R-modules, there is a long exact sequence with natural connecting ho-
momorphisms

Apy

— Ty1(C) 25 Ty(A) = Ty(B) — To(C) =5 T,y (A) —.

(ii) Ty is naturally isomorphic to [ ®g M for some left R-module M ,
(iii) T, (P) = {0} for all projective right R-modules P and alln > 1,

then T, is naturally isomorphic to Tor,lf (@, M) foralln > 0.

Proof. 'We proceed by induction on n > 0. The step n = 0 is axiom (ii). For
the step n = 1, given a right R-module A, there is an exact sequence

0—-K—P—A—0,
where P is projective. By axiom (i), there is a diagram with exact rows:

Ay

—T(P) T\ (A) Tp(K) To(P)

|
714 | \LTOK i 0P
Y

— TorR (P, M) — TorR (A, M) — Tor{ (K, M) — Tor{ (P, M),
1

where the maps 7ox and top are the natural isomorphisms given by axiom (ii).
Of course, naturality gives commutativity of the square on the right. Ax-
iom (iii) gives T1(P) = {0} = Torf(P, M), so that the maps A and §;
are injective. Diagram chasing, Proposition 2.71, gives an isomorphism 74
making the augmented diagram commute.

We now prove the inductive step, and we may assume that n > 1. Look
further out in the long exact sequence. By axiom (i), there is a commutative
diagram with exact rows

Ayt

Th1(P) ——— Ty 41 (A) TW(K) ————T\(P)

|
Tn+1,A | ian l
A

Toer(P, M) — Torerl(A, M)(S,T: Tor,lf(l(, M) %Torrlf(P, M),
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where 1,5 : T,,(K) — Tor,’f (K, M) is an isomorphism given by the inductive
hypothesis. Since n > 1, all four terms involving the projective P are {0}.
It follows from exactness of the rows that both A, and 9,, are isomorphisms.
Therefore, the composite, 7,41,4 = (Sn_ll'c,,]( Api1: Thr1(A) = Frp(A) s
an isomorphism.

That the isomorphisms 7,41 4 constitute a natural isomorphism 7,41 —
Torllf 4 (O, M) is left to the reader with the remark that the proof uses the
assumed naturality of the connecting homomorphisms A and §. e

The strategy of the proof of Theorem 6.33 occurs frequently, and it is
called dimension shifting. Choose a short exact sequence 0 - A — X —
C — 0 whose middle term X forces higher homology groups to vanish; for
example, X might be projective or injective. The proof proceeds as a slow
starting induction, proving results for n = 0 and n = 1 before proving the
inductive step.

The theorem can be generalized.

Corollary 6.34. Let (T,)u>0, (T,))n>0 be sequences of additive covariant
Junctors A — B, where A, B are abelian categories and A has enough
projectives. If,

(i) for every short exact sequence 0 - A — B — C — 0 in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) Ty is naturally isomorphic to T},

(iii) T,(P) =0 = T, (P) for all projectives P and all n > 1,

then Ty, is naturally isomorphic to T, for all n > 0.

Remark. Notice that this corollary does not assume that the sequences
(T)n>0, (T))n>0 are derived functors. <«

Proof. A harmless rewriting of the proof of Theorem 6.33. e

This corollary can itself be generalized.

Definition. Let (7,: A — B),>0 be a sequence of additive functors, where
A and B are abelian categories. If X is a class of objects in .4, then we say
that A has enough X-objects if every object in A is a quotient of an object in
X. We call (T,,)n>0 X-effaceable if T,(X) =0forall X € X andn > 1.

We could call X'-objects acyclic or relatively projective.
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Corollary 6.35. Let (T,: A — B)yso0, (T,: A — B),>0 be sequences of
additive covariant functors, where A, B are abelian categories, X is a class
of objects in A, and A has enough X -objects. If,

(i) for every short exact sequence 0 —- A — B — C — 0in A, there are
long exact sequences with natural connecting homomorphisms,

(i1) Ty is naturally isomorphic to T},
(iii) both (T,)n>0. (T,))n=0 are X-effaceable,

then Ty, is naturally isomorphic to T,, for all n > 0.

Grothendieck made this last corollary into a definition, for it displays the
fundamental properties of homology [see “Sur quelques points d’algebre ho-
mologique,” Tohoku Math J., 1957, pp. 119-183, pp. 185-221] .

Definition. If A, 53 are abelian categories, then a sequence of additive func-
tors (T,: A — B),>0 is a homological 9-functor if, for every short exact
sequence 0 > A — B — C — 01in A, there is a long exact sequence

— T,(A) = T,(B) — T,(C) > T, 1 (A) —

ending — To(A) — To(B) — To(C )7 and having natural connecting homo-
morphisms 9, : T,,(C) — T,_1(A); thatis, if 0 - A’ — B’ — C’ — 0is
exact in A, then the following diagram commutes.

Tu(C) — L= T, (A)

.

T, (C/) 7 Th—1(A")

A morphism t: (Ty),>0 — (Hyp)n>0 of homological d-functors is a sequence
of natural transformations t,,: 7, — H,, for n > 0, such that the following
diagram commutes:

T,(C) —= T,_1(A)

Tn,C\L lfnl,A

H, (C) —> Hy-1(A)

for every short exact sequence 0 > A — B — C — 0in A.

We can now give a useful variation of Corollary 6.35.

"Most authors assume further, as part of the definition, that the long exact sequence
ends with — T(A) — To(B) — Tp(C) — 0; that is, that T is right exact.
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Definition. If F: A — B is an additive functor, then a homological 9-
functor (7,,: A — B),>0 is a homological extension of F if there is a natural
isomorphism 7: F — Tj.

For example, (Torff (A, 0))n>0 is a homological extension of A ®p L.

Theorem 6.36. Let A be an abelian category with enough projectives.

(1) If (T,) and (H,) are homological d-functors A — Ab with H,(P) =
{0} for all projective P and n > 1, and if 7o: To — Hy is a natural
transformation, then there exists a unique morphism v : (T,) — (Hy).
Moreover, if 1y is a natural isomorphism, then t, is a natural isomor-
phism for alln > 0.

(ii) If F: A — Ab is a right exact additive covariant functor, then there
exists a unique homological extension (Hy),>o0 of F with H,(P) = {0}
for all projective P and alln > 1.

Proof.

i f0—- A — B — C — 0is exact, we construct 7,,: T, — H, by
induction on n > 0. We are assuming the existence of 7y, and so we
may assume that n > 0 and that there is a natural 7,1 : 7,1 — H,_1.
Since there are enough projectives, there is an exact sequence

0O0—-—K—-P—->C—0 (1)
with P projective. In the commutative diagram

T,(C) ——= Th—1(K) ——=T,,—1(P)

|
] l
v

Hy(P) —— H,(C) — Hy—1(K) — Hp—1(P),

the map H,(C) — H,_1(K) is an isomorphism [for H,(P) = {0}
for n > 1], and there exists a unique homomorphism 7, ¢c: 7,,(C) —
H,, (C) (the clockwise composite) making the first square commute. We
claim that 7, = (t,,c: Ty — Hy)ceobj4) 1S natural, that it is well-
defined [it does not depend on the choice of sequence (1)], and that it
commutes with the connecting homomorphisms of (7;,) and (Hy).

We prove these assertions with the aid of the following fact. We claim,
given the diagram

Cc

|
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with exact row, that there is a commutative diagram

T.f a
T, (C) — =T, (A") —— T,—1(A")

T’Lcl J{Tn—l,A’

Hy(€) — Hy(A") —5= Hy1(A).

Since P is projective, there is a commutative diagram

0 K P C 0
gi i lf
0 A’ A A" 0.

Consider the following diagram (which can also be drawn as a cube).

T,(C) 0 T, 1(K)

Tn—1,K

s
a

H,(C) —2> H,_1(K)
T f ani \LHnlg Th—1,K
Hy(A") —= Hy 1 (A")

Th-1(A")

T, (A")

a

The upper trapezoid commutes, by construction of 7, ¢; the inner
square commutes because (H,) is a d-functor; the right trapezoid com-
mutes, by naturality of t,,_1; finally, the outer square commutes because
(T,) is a o-functor. It follows that the rectangle of the claim commutes.

We now show that 7, is natural. Let X1, X, € obj(.A), and choose exact
sequences 0 - K; — P; — X; — 0 with P; projective, fori =1, 2.
Given f: X1 — Xp, define 7, x,: 1,(X;) — H,(X;), as in the first
paragraph of this proof. Apply the fact just proved to

X1

lf

0 K> P X5 0,
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and obtain the diagram in which the perimeter commutes:

Tnf
T, (X1) —L> T,(Xy) — L= T, 1(X2)

rn.Xl \L lfn.XZ irnl,Kz

H,(X1) 7 H,(X>) — H, 1(K>).

The right square commutes, by construction of 7, x,, while the connect-
ing homomorphism 9 in the bottom row is injective because H,(P>) =
{0}. It now follows that the left square commutes; that is, 7, = (7, x) is
natural. To see that 7, x does not depend on the choice of sequence (1),
apply this argument with X; = X, and f = 1x,. Finally, to see that 7,
commutes with connecting homomorphisms, take any exact sequence
0— A — B — C — 0 and apply the fact to the diagram

C

i

0 A B C 0.

(i) The existence of a homological extension follows from Theorems 6.10,
6.26, and 6.29. Uniqueness follows from part (i) with 7¢ the identity. e

We could have defined (Tor,lf (A, 0)),>0 as the homological extension of
A ®p O [and also Tor,lf (O, B) as the homological extension of [J ®g B], but
we would then have been obliged to prove the existence of such a sequence;
that is, the earlier results in this section. There are other constructions of Tor
(for example, generators and relations for Tor%(A, B) are given on page 411),
but it is comforting to realize, in principle, that we can use the functors Tor
without being constantly aware of the details of their construction as left de-
rived functors.

Remark. In the 1930s, there were many constructions of homology groups
and cohomology groups associated to topological spaces (e.g., simplicial ho-
mology, singular homology, cubical homology, Cech cohomology), each in-
vented for a specific purpose, and it was natural to ask whether these groups
coincided with other homology groups. The first axiomatic characterization
of homology was due to Eilenberg and Steenrod, “Axiomatic approach to
homology theory,” Proc. Nat. Acad. Sci. U.S.A., 31 (1945), 117-120.

Definition. Let Top® be the category having as objects all pairs (X, A) of
topological spaces with A a subspace of X, as morphisms (X, A) — (X', A")
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all continuous functions f: X — X’ for which f(A) € A’, and usual compo-
sition. The Eilenberg—Steenrod Axioms for a sequence of covariant functors
(Gp: Top2 — Ab) and natural maps (9,: G,(X, A) = G,_1(A, ©)) are

(i) Homotopy Axiom. If fy, f1: (X, A) — (X', A’) are homotopic, then,
foralln > 0,

Gu(fo) = Gu(f1): Ga(X, A) — Gu(X', A);

(i) Exactness Axiom. Write G, (X, &) = G, (X). Given a pair (X, A) and
inclusion mapsi: (A, &) — (X, @) and j: (X, ¥) — (X, A), there is
a long exact sequence

Gt 1(J d (i G h
G (X, A) 23 G () 22 6,0 MY Gx, 4)

(ii1) Excision Axiom. Given a pair (X, A) and an open U € X such that
U C interior(A), then the inclusion (X — U, A—U) — (X, A) induces
isomorphisms G, (X —U,A —U) — G,(X, A) foralln > 0;

(iv) Dimension Axiom. For every one-point space P, we have

{0} ifn >0,
G,(P) =
n(F) {Z ifn = 0.
In more detail, on the full subcategory of all one-point subspaces, there
is a natural isomorphism 7: Gy — Z (where Z denotes the constant
functor at Z). Thus, if P and Q are one-point spaces and f: P — Q,
then there is a commutative diagram

Go(P) L—7

Go(f)i llz

Go(Q) 75— Z.

Theorem (Eilenberg-Steenrod). If two sequences of covariant functors
(G, Hy: Top2 — Ab), >0 and natural maps satisfy the Eilenberg—Steenrod
Axioms, then

G, = H,foralln >0. <«

It follows that the singular and simplicial homology of a simplicial com-
plex K are the same.
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6.2.3 Covariant Right Derived Functors

Left derived functors L, T satisfy Corollary 6.28: if T is right exact, then LoT

is naturally isomorphic to 7. For this reason, it is natural to take left derived

functors of tensor. We are now going to define right derived functors R"T,

where T': A — C is an additive covariant functor between abelian categories.

We will prove the analog of Corollary 6.28, which says that R°T = T when

T is left exact. Thus, this construction is appropriate for Hom functors.
Choose, once for all, an injective resolution

0 1 2
E=0>B-LE ‘S p 4 24 3,

of every object B, form the complex TEZ, where E? is the deleted injective
resolution, and take homology:

(R"T)B = H"(TEB) - ker—Td”

B ~imTdn-l
The reader should reread Example 6.6(ii); if we relabel E” as E_, and d" as
d_,, then the definition is

kerTd_,

R"T)B = H_,(TES) = ———" |
(R"T) WTED) = o

Notice that the indices on homology are now superscripts; we write H" in-
stead of H_,,.

The definition of (R"T)f, where f: B — B’ is a homomorphism, is
similar to that for left derived functors. By the dual of the comparison theo-
rem, there is a chain map f ' EB = EF over f, unique to homotopy, and
so there is a well-defined map (R"T) f: H"(TE?) — H"(TEB/) induced in
homology, namely, (T’ fv V-

In pictures, look at the chosen injective resolutions:

0 B’ E/O Ell
4
0 B EO El

Fill in a chain map f over f,then apply T to this diagram, and then take the
map induced by T' f in homology.

The proofs of the following propositions about right derived functors are
essentially duals of the proofs we have given for left derived functors, and so
they will be omitted.

Theorem 6.37. If T: A — C is an additive covariant functor between
abelian categories, where A has enough injectives, then R"T : A — C is an
additive covariant functor for every n € 7.
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Definition. If 7: A — C is an additive covariant functor between abelian
categories, where A has enough injectives, the functors R"T are called the
right derived functors of T .

Proposition 6.38. [fT: pMod — gMod is an additive covariant functor
that preserves multiplications, then R"T: RMod — grMod also preserves
multiplications.

The next proposition shows that R"T is of interest only for n > 0.

Proposition 6.39. IfT: A — C is an additive covariant functor between
abelian categories, where A has enough injectives, then (R"T)B = 0 for all
negative n and for all B.

Definition. If 7 = Homg (A, UJ), define Ext} (A, [J) = R"T. If the chosen

L . . d° d'
injective resolution of BisE = 0 — B —» E9 > E! “5 E2 —5 then

kerd?”
Exty(A, B) = H"(Homg (A, EF)) = ——*,
imd}~
where d! : Homg(A, E") — Hompg(A, E"t1) is defined, as usual, by

d": f > d"f.

The domain of Ext’, (A, [J) is gkMod, the category of left R-modules, and
its target is Ab (there are also Ext” functors defined on Mody if the Hom
functor T acts on right modules). If R is commutative, then Homg (A, B) is
an R-module, and so the values of Ext} (A, [J) lie in gMod.

Assume that new choices E of injective resolutions have been made; de-
note the right derived functors arising from these new choices by R"T.

Proposition 6.40. If T: A — C is an additive covariant functor between
abelian categories, where A has enough injectives, then the functors R"T and
R"T are naturally isomorphic for each n. In particular, for all A € obj(A),

(R"T)B = (R"T)B,

and so these objects are independent of the choice of injective resolution of B.
In particular, if T: gMod — sMod, where R and S are rings, then the
module Exty (A, B) is independent of the choice of injective resolution of B.

Corollary 6.41. Let T: A — C be an additive covariant functor between
abelian categories, where A has enough injectives. If E is injective, then
(R'"T)E = {0} for all n > 1. In particular, if E is an injective left R-module,
then Exty (A, E) = {0} for all n > 1 and all left R-modules A.
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Corollary 6.42. Let A be an abelian category with enough injectives let

l
B € obj(A), and let E = 0 — B 1 E0 L, B B2 L B3 L e
an injective resolution of B. Define Vo = imn and define V,, = imd"~! for
alln > 1. Then

(R™TYB = (R"T)Vo = (R"'T)V = - = (R'T)V,_1.
In particular, for any left R-modules A and B,

Ext;" (A, B) Z Ext}(A, Vo) = -+ = Exth(A, V,_1).

Theorem 6.43. [f0 - B’ —> B L, B” - 0is an exact sequence in an
abelian category A with enough injectives, and if T : A — C is an additive
covariant functor, where C is an abelian category, then there is a long exact
sequence

g KD (R"T)i (R"T)p

— (R"T) (R”T)B (R"T)B" 5

p (R +‘T>p

n+l1
(Rn+1T)B (Rl’l+1T)B (RYL+1T)B// a_)

that begins with

0— (R°T)B' — (R°T)B — (R°T)B" —

Corollary 6.44. If T: A — C is an additive covariant functor between
abelian categories, where A has enough injectives, then the functor R°T is
left exact.

Theorem 6.45.

(1) If an additive covariant functor T : A — C is left exact, where A and C
are abelian categories and A has enough injectives, then T is naturally
isomorphic to ROT.

(1) If A is a left R-module, then the functor Homg (A, ) is naturally iso-
morphic to Ext% (A, Q). Hence, for all left R-modules B, there is an
isomorphism

Homg(A, B) = Ext%(A, B).

Corollary 6.46. If0 — B’ — B — B” — 0 is a short exact sequence of
left R-modules, then for every left R-module A, there is a long exact sequence



6.2 DERIVED FUNcTORS 367

of abelian groups,

0 — Homg(A, B') — Homg(A, B) — Homg(A, B”)
— Exth(A, B') — Exth(A, B) — Exth(A, B)
— Exth(A, B') — Exth(A, B) — Exth(A, B") — .

Thus, Ext repairs the loss of exactness after applying Homg (A, [J) to a
short exact sequence.

Theorem 6.47. Given a commutative diagram of left R-modules having ex-
act rows,

i p

0 B’ B B” 0
fi ig ih
0 c'——=C 7 c’ 0,
J

there is a commutative diagram of abelian groups with exact rows,

Exty(A, B') —— Exty(A, B) —2“> Exty(A, B") — = Extit! (A, B')

il | i |

Ext’ (A, C') — Ext} (A, C) —— Exty(4, C") — Exts™ (A, C).
Theorem 6.48 (Axioms for Covariant Ext). Let (F": gkMod — Ab),>0
be a sequence of additive covariant functors. If,

(1) for every short exact sequence 0 —- A — B — C — 0, there is a long
exact sequence with natural connecting homomorphisms

S FUC) 25 PP (A) > FP(B) — F'(C) 25 F'H(A) -,

(ii) there is a left R-module M such that F® and Homg (M, O) are naturally
isomorphic,

(iii) F"(E) = {0} for all injective left R-modules E and all n > 1,

then F" is naturally isomorphic to Exty (M, ) for all n > 0.

Proof.  See the proof of Theorem 6.33. o
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Corollary 6.49. Let (F": A — B)y>0, (F"")u>0 be sequences of additive
covariant functors, where A, B are abelian categories and A has enough
injectives. If,

(1) for every short exact sequence 0 - A — B — C — 0, there are long
exact sequences with natural connecting homomorphisms,

(i) FO is naturally isomorphic to F' 0,

(iii) F*(E) =0 = F""(E) for all injective objects E and all n > 1,

then F" is naturally isomorphic to F"" for alln > 0.

Definition. Let (F": A — B),>0 be a sequence of additive functors, where
A and B are abelian categories. If ) is a class of objects in A, then we say that
A has enough co-)-objects if every object can be imbedded in a ))-object. We
call (F"),>0 YV-coeffaceable it F"(Y) =0forallY € Yandalln > 1.

We could call objects in Y acyclic or relatively injective.

Corollary 6.50. Let (F": A — B),>0, (F": A — B),>0 be sequences of
additive covariant functors, where A, B are abelian categories, ) is a class
of objects in A, and A has enough co-Y-objects. If,

(i) for every short exact sequence 0 — A — B — C — 0in A, there are
long exact sequences with natural connecting homomorphisms,

(i) FO is naturally isomorphic to F ’O,

(ili) both (F™)p>0, (F'")n>0 are Y-coeffaceable,

then F" is naturally isomorphic to F"" for all n > 0.

Definition. If A, 3 are abelian categories, then a sequence of additive func-
tors (T": A — B),>0 is a cohomological d-functor if, for every short exact
sequence ) - A — B — C — 01in A, there is a long exact sequence

— T"(A) — T"(B) — T"(C) LN T"(A) -

beginning with 7%%A) - T9B) —» T°%C)8 having natural connecting ho-
momorphisms 8" : T"(C) — T"+1(A); thatis,if0 - A’ - B’ — C' — 0

8Most authors assume further, as part of the definition, that the long exact sequence
starts with 0 — TH(A) — Tp(B) — T(C); that is, that Ty is left exact.
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is exact in .4, then the following diagram commutes.

" (0) 43/> TrH-l (A)

L

Tn(C/) 7 Tn+1(A/)

A morphism t: (H"),>0 — (T"),>0 of cohomological d-functors is a se-
quence of natural transformations t": H" — T", for n > 0, such that the
following diagram commutes.

H"(C) 4B> Hn-H (A)

n n+1
Tcl lTA

Tn(c) 7) Tn+1(A)
for every short exact sequence 0 > A — B — C — 0in A.

Definition. If F: A — B is an additive functor, then a cohomological 9-
functor (T": A — B),>0 is a cohomological extension of F if there is a
natural isomorphism 7: F — T9,

(Ext’y (A, 0)),>0 is a cohomological extension of Homg (A, [J).

Theorem 6.51. Let A be an abelian category with enough injectives.

(1) If (H™) and (T") are cohomological d-functors with H"(E) = {0} for
all injective E andn > 1, and if t°: H® — TY is a natural transforma-
tion, then there exists a unique morphism t: (H'") — (T"). Moreover,
if 0 is a natural isomorphism, then t" is a natural isomorphism for all
n>0.

(1) If F is a left exact covariant additive functor, then there exists a unique
cohomological extension (H"),>o of F with H"(E) = {0} for all injec-
tive E and all n > 1.

Proof. Dual to the proof of Theorem 6.36. e

6.2.4 Contravariant Right Derived Functors

We now discuss right derived functors R"T of an additive contravariant func-
tor T'. Given a resolution C, we want T C to have only negative indices. Thus,
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we start with a projective resolution P of A, for the contravariance of T puts
TP, on the right.”

Given an additive contravariant functor 7T : A — C between abelian cate-
gories, we are now going to construct, for all n € Z, its right derived functors
R'T: A— C.

Choose, once and for all, a projective resolution P = — P i) Py BN
A — 0 for every object A, form the complex TP,4, and take homology:

ker Tdy 11

R'T)A = H"(TP,) =
(R"T) (TP4) mTd,

If f: A— A, define (R"T)f: (R"T)A" — (R"T)A as we did for left
derived functors. There is a chain map f: P4 — P’;, over f, unique to ho-
motopy, that induces a map (R"T) f : H”(TP;V) — H"(TP,) in homology,

and we define (R"T) f = (T f)nx.

Theorem 6.52. IfT: A — C is an additive contravariant functor between
abelian categories, where A has enough projectives, then R"T : A — C is an
additive contravariant functor for every n € Z.

Definition. If 7: A — C is an additive contravariant functor between
abelian categories, where 4 has enough projectives, the functors R"T are
called the right derived functors of T.

Proposition 6.53. If T: pMod — gMod is an additive functor that pre-
serves multiplications, then R"T : gRMod — gMod also preserves multipli-
cations.

Definition. If 7 = Homg(LJ, B), define exty (L], B) = R"T. If the chosen

. . . . d: d
projective resolutionof AisP = — P, N Py LN Py LA 0, then

ker d"*

extz(4, B) = H" (Homp(Py, B)) = -,

where d"*: Homg(P,—1, B) — Homg(P,, B) is defined, as usual, by

d™: f— fd".

91f we cared about left derived functors of a contravariant T (we do not, because there
are few interesting examples, but see Exercise 7.13 on page 435), then we would use
injective resolutions E, for the contravariance of 7" would put all the nonzero terms of
TE on the left.
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Proposition 6.54. [fT: A — C is an additive contravariant functor, where
A, C are abelian categories and A has enough projectives, then (R"T)A = 0
for all negative n and for all A.

Corollary 6.55. Let A be an abelian category with enough projectives, and

d d
letP=—> P, = P =5 Py 5 A > 0be a projective resolution of A.
Define Ko = kere and K,, = kerd,, for alln > 1. Then

(R TYAZ (R"TKo = (R"'THK, = - = (R'T)K,,_1.
In particular, for any left R-module B,
exth (A, B) = exth(Ko, B) = - = exth(K,—1, B).

Assume that new choices PA of deleted projective resolutions have been
made, and denote the right derived functors arising from these new choices
by R"T

Proposition 6.56. [If T: A — C is an additive contravariant functor be-
tween abelian categories, where A has enough projectives, then for each
n € 7Z, the functors R"T and R"T are naturally isomorphic. In particular,
forall A,

(R"T)A = (R"T)A,

and so these objects are independent of the choice of projective resolution
of A.

Corollary 6.57. The module exty(A, B) is independent of the choice of
projective resolution of A.

Corollary 6.58. Let T: A — C be an additive contravariant functor, where
A and C are abelian categories and A has enough projectives. If P is projec-
tive, then (R"T)P = 0 foralln > 1.

In particular, if T: RMod — sMod and P is a projective left R-module,
then exty (P, B) = {0} for all n > 1 and all left R-modules B.

Theorem 6.59. Let A be an abelian category with enough projectives. If
' p . .

0> A - A -5 A” — 0is an exact sequence and T: A — C is an

additive contravariant functor, where C is an abelian category, then there is a

long exact sequence in C,

R'T R'T a"
A//( )P ( )i (RnT)A/

— (R"T) (R"T)A

T)p

Ry A7 CEDP gty 4 FEDT ey ar 2
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that begins with

0— (R°T)A” — (R°T)A — (R°T)A' — .

Corollary 6.60. IfT: A — C is an additive contravariant functor, where
A, C are abelian categories and A has enough projectives, then the functor
ROT is left exact.

Theorem 6.61.

(1) If an additive contravariant functor T: A — C is left exact, where
A, C are abelian categories and A has enough projectives, then T is
naturally isomorphic to ROT.

(1) If B is a left R-module, the functor Hompg (L1, B) is naturally isomor-
phic to ext% (4, B). Hence, for all left R-modules A, there is an iso-
morphism

Homg (A, B) = ext%(A, B).

Corollary 6.62. If0 — A" - A — A” — 0 is a short exact sequence of
left R-modules, then for every left R-module B, there is a long exact sequence
of abelian groups
0 — Homg(A”, B) — Homg(A, B) — Homg(A', B)
— exth(A”, B) — exth(A, B) — exth(A’, B)

— exth(A”, B) — exth(A, B) — ext3a(A', B) — .

Proposition 6.63. Given a commutative diagram of left R-modules having
exact rows,

0 A —s A Ly 0
fi ig ih
0 C'—=C——=C" 0,
J

then for every left R-module B, there is a commutative diagram of abelian
groups with exact rows

exty (A", B) L exty (A, B) -> exty(A', B) —> ext’: (A", B)

] e g e

Xty (C", B) —> ex(z(C, B) —=ext3(C', B) - exty" ! (C", B).
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Theorem 6.64 (Axioms for Contravariant Ext). Ler (G": gRMod — Ab)
be a sequence of additive contravariant functors. If,

(1) for every short exact sequence 0 —- A — B — C — 0, there is a long
exact sequence with natural connecting homomorphisms,

n—1 n
— G"(4) 55 6M(C) = GM(B) = G"(A) 25 6" () —,

(1) there exists a left R-module M with G° and Homg (O, M) naturally
isomorphic,
(iii)) G™(P) = {0} for all projective left R-modules P and alln > 1,
then G" is naturally isomorphic to Ext (LJ, M) for all n > 0.
Proof.  See the proof of Theorem 6.33. o

Remark. It is easy to see that Theorem 6.64 is true if we replace projective
in part (iii) by free. <«

Corollary 6.65. Let (G": A — B)y>0, (G": A — B),>0 be sequences
of additive contravariant functors, where A, B are abelian categories and A
has enough projectives. If,

(1) for every short exact sequence 0 - A — B — C — (), there are long
exact sequences with natural connecting homomorphisms,

(i) G is naturally isomorphic to G’ 0
(iii) G"(E) = 0 = G (P) for all projective objects P and alln > 1,
then G" is naturally isomorphic to G for all n > 0.
Corollary 6.66. Let (G": A — B)y>0, (G'": A — B),>0 be sequences of

additive covariant functors, where A, B are abelian categories, X is a class
of objects in A, and A has enough X-objects. If,

(i) for every short exact sequence 0 - A — B — C — 0in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) GV is naturally isomorphic to G’O,
(iii) both (G" (>0, (G )n>0 are X-effaceable,

then G" is naturally isomorphic to G'" for all n > 0.

We let the reader give the obvious definition of cohomological extension
of a contravariant additive functor, and then prove the analog of Theorem 6.51.
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The next theorem shows that Ext and ext are the same.

Theorem 6.67. Let A and B be left R-modules, let E = 0 — B N

0 1 2
E° i) E! L) E? i> E3 — be an injective resolution of B, and let
d
P=—> P -5 P 5 A > 0be a projective resolution of A. Then
H"(Homg (P4, B)) = H"(Homg (A, E®)) foralln > 0, and so

Exth (A, B) = ext (A, B).
Proof. Use Theorem 6.32. e

Singular cohomology groups H?(X, G) of a space X with coefficients
in an abelian group G, defined as H?(Homgz(S.(X), G)), arise for several
reasons. One application arises in obstruction theory (see Spanier, Alge-
braic Topology, §8.4). Recall that the nth homotopy group 7, (X, xg) of X
(with basepoint xgp € X) essentially consists of homotopy classes of con-
tinuous maps S” — X, where S” is the n-sphere. If X is a CW com-
plex, we often construct a continuous map X — Y by induction on the
n-skeletons X of X. In particular, having defined a map X~V — Y,
extending it to an n-cell of X naturally leads to H"T!(X, m,(Y)), where
H"(X, ) = H"(Homz(Se(X), w)). There is a Universal Coefficient The-
orem for cohomology, Theorem 7.59, that computes such groups in terms of
homology groups.

The most important uses of cohomology involve products (see Mac Lane,
Homology, Chapter VIII). Assume that the coefficients form a commutative
ring R. Although cup product is defined on singular complexes of spaces X,
we will define it only for simplicial complexes K. If f is a p-cochain and g
is a g-cochain, then their cup product is the (p 4+ g)-cochain f U g defined
ona (p + g)-simplex [v, ..., vpi4] by

(fUNvo, ..., vptgl = flvo, ..., vplglvp, ..., vpiqgl,

where fg is the product in the the ring R [see Munkres, Elements of Algebraic
Topology, §48]. Now §(f U g) = (8(f) Ug) + (—1)P(f U dg), so that cup
product induces a bilinear function H” (X, R) x HY(X,Z) — HP*4(X, R).
The direct sum €, , H"(X, R) is now equipped with a multiplication that
makes it a graded ring, called the cohomology ring of X with coefficients
in R. Although there are more important uses of this ring, it can be used
to show that even though the torus X = S! x S! and the wedge of spheres
Y = 82 v S!' v §! have the same cohomology groups (with Z coefficients),
they do not have the same homotopy type, because their cohomology rings are
not isomorphic (see Rotman, An Introduction to Algebraic Topology, p. 404).
There is also a cap product:

HP(X,R) ® Hpyy(X, R) — H,y(X, R).
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If X is a compact orientable n-manifold without boundary, then it has an ori-
entation class I € H, (X, Z), and the cap products with I are isomorphisms
for all p with 0 < p < n, called Poincaré Duality (see Munkres, §66, §67):

HP(X,G) = H,—p(X, G).

Here is another source of complexes giving rise to homology.

Definition. A simplicial object in a category C is a sequence of objects
Xo, X1, X2, ... and two doubly indexed families of morphisms: face opera-
tors, which are morphisms d,‘;: X, —> X,—1forall0 <i <nand 1 < n;de-
generacy operators, which are morphisms sfl: Xy — Xpprforall0 <i <n
and 0 < n. These morphisms satisfy the following identities:

i gJ T e T . . .
dndn+1—dn a1 if 0<i<j<n+4l1,
i i i 4j—1 . . .
s,jlsllq_1 :s,idhlfl if0<i<j=<n,
j=1 ;i . . .
A . sn_ldn if0<i<j<n,
dypysn =1 1 if0<i=j<nor0<i—1=j<n,
iogi-1 L
s dy if0<j<i—-1<n.

We picture face operators as

and degeneracy operators as
<« -
X3 e Xo £X <~ Xo.

These operators arise naturally when one constructs the boundary operator
for simplicial complexes. Recall that the standard n-simplex A" consists of
all convex combinations (tg, ..., t,) in R+ that is, ; > O for all i and
Y itot; = 1. The face operators are precisely the face maps €' : ATl A
defined in Chapter 1:

(07 IOa ML) tﬂ—l) lfl = 07
€' (to, ... thm1) > o
(to, ..., ti—1,0, 8, ..., t,—1) ifi > 0.
We did not define degeneracies in Chapter 1; they are given by
i, .oy tn) = (o, -« s tim1, 6+ lig 1, L2, ooy Bn).

Given a simplicial object in an abelian category A, define its associated
complex

0, a
—>Xn—n>Xn_1—>---X1—l>X()—>0,
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where 9, = Y_"_(—1)'d.. The given identities for d’ imply 39 = 0. Thus,
simplicial objects have homology. The degeneracies allow one to construct an
abstract version of homotopy groups as well (see Gelfand—Manin, Methods of
Homological Algebra, May, Simplicial Objects in Algebraic Topology, and
Weibel, An Introduction to Homological Algebra).

Exercises

6.13

*6.14

6.15

6.16

6.17

*6.18

*6.19

If t: F — G is a natural transformation between additive functors,
prove that t gives chain maps t¢c: FC — GC for every complex
C. If 7 is a natural isomorphism, prove that FC = GC.

Consider the commutative diagram with exact row

B —-c—"-p

Sl

B.

If k is an isomorphism with inverse ¢, prove exactness of
i
B - B2 B

Let T: A — C be an exact additive functor between abelian cat-
egories, and suppose that P projective implies 7 P projective. If
B € obj(A) and Py is a deleted projective resolution of B, prove
that TPrp is a deleted projective resolution of 7' B.

Let R be a k-algebra, where k is a commutative ring, which is flat as
a k-module. Prove that if B is an R-module (and hence a k-module),
then

R ®; TorX (B, C) = Tor® (B, R ®; C)

for all k-modules C and all n > 0.
Let R be a semisimple ring.
(i) Prove, for all n > 1, that TorR(A, B) = {0} for all right
R-modules A and all left R-modules B.
(ii) Prove, for all n > 1, that Extp(A, B) = {0} for all left
R-modules A and B.
If R is a PID, prove, for all n > 2, that Tor,’f(A, B) = {0} =
Ext; (A, B) for all R-modules A and B.
Hint. Use Corollary 4.15.
Let R be a domain with fraction field Q, and let A, C be R-modules.
If either C or A is a vector space over Q, prove that Tor,’f (C,A)and
Ext’, (C, A) are also vector spaces over Q.
Hint. Use Exercise 2.38 on page 97.
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*6.20 Let R be a domain and let Q = Frac(R).
(i) Ifr € Risnonzero and A is an R-module for which rA =
{0}, that is, ra = O for all @ € A, prove that Exts(Q, A) =
{0} = TorR(Q, A) forall n > 0.
(i) Prove that Exts(V, A) = {0} = Tor®(V, A) foralln > 0
whenever V is a vector space over Q and A is an R-module
for which r A = {0} for some nonzero r € R.
6.21 Let A and B be R-modules, and let A’ be a submodule of A. De-
fine the obstruction of a map f: A’ — B to be d(f), where 9 is
the connecting homomorphism Homg(A’, B) — Ex~t}e (A/A’, B).
Prove that f can be extended to a homomorphism f: A — B if
and only if its obstruction is O.
6.22 Give an example of an R-module B for which Ly Hompg (B, 0J) is
not naturally isomorphic to Homg (B, [J), where Lg is the Oth left
derived functor.

6.3 Sheaf Cohomology

Even though there were earlier accounts of abelian categories (for example,
Buchsbaum’s appendix on exact categories in Cartan—Eilenberg, Homologi-
cal Algebra), it was Grothendieck’s Tohoku papers that have been most influ-
ential. Grothendieck began:

Ce travail a son origine dans une tentative d’exploiter I’analo-
gie formelle entre la théorie de la cohomologie d’un espace a
coéfficients dans un faisceau et la théorie des foncteurs dérivés de
foncteurs de modules, pour trouver un cadre commun permettant
d’englober ces théories et d’autres.

In a word, sheaf cohomology arises as the right derived functors of global
sections. We restrict our discussion to sheaves of abelian groups, but the
reader should have no problem extending it to sheaves having values in other
abelian categories.

If X is a topological space, the group of global sections defines functors
I': pSh(X) - Aband I': Sh(X) — Ab. In each case, the functor is defined
on objects X by

'X—rw,F =FX)

and on (pre)sheaf maps ¢ = (¢u)vopen: F — G by I': s > @x(s), where
s € I'(X, F). It is clear that each I' is a (covariant) additive functor.
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Lemma 6.68. The functors I': pSh(X) — Ab and I": Sh(X) — Ab are
left exact.

Proof. Exactness of presheaves 0 — P’ -2 P Y P 5 0 defined as

exactness of the abelian groups 0 — P'(U) 2 Py Yy, P"(U) — 0 for
every open U C X. In particular, the sequence is exact when U = X, and so
I" is even an exact functor on presheaves.

Exactness of sheaves means exactness of stalks, which is usually different

from exactness of presheaves. However, if 0 - F' — F Yy F7is an exact
sequence of sheaves, then ¥ is a presheaf map, and Proposition 5.80(ii) says
that ker ¢ computed in Sh(X) is the same as ker Yy computed in pSh(X).
Hence, 0 - F' — F — F” is exact in pSh(X), and the proof in the first
paragraph now applies. e

The next example shows that I': Sh(X) — Ab need not be an exact
functor.

Example 6.69. In Example 5.82, we saw that there is an exact sequence of
sheaves over the punctured plane X = C — {0},

0—>Z—>(’)—(p>(’)x—>0,

where Z is the constant sheaf, O is the sheaf of germs of holomorphic func-
tions, O™ is the sheaf of nonzero holomorphic functions, and ¢y : OU) —
O*(U) is given by f + 2™/ For every open set U, we have O(U) the
additive group of all holomorphic f: U — C and O*(U) the multiplicative
group of all never-zero holomorphic f: U — C*. If the function s(z) = z in
['(X,C*)isin im¢* [where ¢*: I'(O) — ['(O*) is the induced map], then
z = 2™ @) that is, f(z) = sz log(z). This is a contradiction, for no branch
of log(z) on the punctured plane is single-valued. Therefore, I is not an exact
functor. <«

We now define sheaf cohomology as right derived functors of global sec-
tions I'; this is possible because Sh(X) has enough injectives, by Proposi-
tion 5.97. Note that taking derived functors of I": pSh(X) — Ab is uninter-
esting, for the higher derived functors of an exact functor are trivial.

Definition. If X is a topological space, then sheaf cohomology is defined,
for every sheaf F over X, by

H(F) = (RIT)(F).

In short, take an injective resolution E of F, delete F to obtain E, apply
I', and take homology:

HY(F) = HY(TE”).
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As usual, H(F) can be computed.

Proposition 6.70. If X is a topological space, then
HY(F) = T(F)
for every sheaf F over X.

Proof.  Since I is a left exact functor, the result follows at once from Theo-
rem 6.45. e

Thus, H'(F) repairs the loss of exactness arising from I': Sh(X) — Ab
not being exact; in other words, we may interpret H' as obstructions.

Remark. The global section functor I' = I'(X, [J) is often modified.

Definition. A family of supports ® is a family of closed subsets of X such
that

(i) whenever A € ® and B C A is closed, then B € ®,
(ii) whenever A, A’ € ®,then AU A’ € ®.

Define I'p(F) ={s e I'(X, F) : {x € X : 5(x) # 0, € E,} € O}, where
F has etale-sheaf (E, p, X) and ® is a family of supports. It is easy to see
that 'y : Sh(X) — Ab is a covariant left exact additive functor. One defines
sheaf cohomology Hg, with supports ® as the right derived functors of I'g.
The family @ of all closed subsets is a family of supports, so that 'e = I
and Hg) = H4Y in this case. <«

Definition. A sheaf £ over a space X is acyclic it H1(L) = {0} for all
qg=>1.

We know that injective sheaves are acyclic, by Corollary 6.41, but there
are other examples. Acyclic sheaves become especially interesting when there
are enough of them; that is, when every sheaf F can be imbedded in an acyclic
sheaf £. In this case, the short exact sequence 0 - F — £ — L/F — Ocan
be used in dimension shifting arguments. The most popular acyclic sheaves
are flabby sheaves.

Definition. A sheaf £ over a space X is flabby (or flasque) if, for each open
U C X, every section s € L(U) can be extended to a global section.
A flabby resolution of a sheaf F is an exact sequence

0>F >0l ...

in which £ is flabby for all ¢ > 0.
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A sheaf L is flabby if and only if the restriction maps I'(X, £) — T'(U, £)
are all epic; it follows that the restriction maps p(‘j TV, L) - I'(U, L) are
epic for all open sets U C V, because p‘),(pl‘; = ,05. Hence, if U C X is
open, then £ flabby implies L|U is also flabby.

Example 6.71. Every skyscraper sheatf S = x,A is flabby. Recall that
S(WU) = Aif x € U, while S(U) = {0} otherwise, and its restrictions are
either 14 or zero. Hence, if x € U C V, then ,ol‘; = 14 is surjective. <

Definition. If F is a sheaf of abelian groups over a space X, then its Gode-
ment sheaf G°F is defined by

G"FW) =[] Feo

xeU
and pl‘j: GOF(V) — GOF(U), for U C V,is given by s > s|U.

It is routine to check that QOJ-" is a sheaf. In fact, QO defines a covariant
exact functor Sh(X) — Sh(X): if 0 - F — F — F’ — 0 1is an exact
sequence of sheaves, then it is clear, for every open U C X, that

0+]]ﬁwyaﬂfwyaﬂfmneo

xeU xeU xeU

is an exact sequence of abelian groups; that is, 0 — gof/(U) — go}"(U) —
GOF"(U) — 0is exact. Taking the direct limit gives exactness of stalks: 0 —
GOF — GYF, — GOF! — 0;thatis, 0 — GOF — GOF — GOF" — 0is
an exact sequence of sheaves.

Proposition 6.72. The Godement sheaf GOF of a sheaf F is flubby.

Proof.  Since global sections here are merely (not necessarily continuous)
functions X — [],.x Fx, every section s over U extends to a global section
s'; for example, define s'|U = s and, if x ¢ U, define s’(x) =0. o

Proposition 6.73 (Godement). Let F be a sheaf over a space X.
(i) There is a natural imbedding 0 — F — GOF.
(i) There is a flabby resolution

GF=0>F—>GF->G'F—..
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Proof.

() If U C X is open, define F(U) — (G°F)(U) by

s ) e [[FA =@ HW).

xeU

It is routine to check that this is a natural sheaf monomorphism.

(i) We prove, by induction on g, that there are flabby sheaves G F for all
i < g and sheaf maps d': G'F — G/t F fori < g — 1 such that

00— F— gofﬂglf_) ..._>g61—1‘7:‘ﬂ_7;gq‘7:
is exact. We have already defined G°F. Define
GIT'F = G%cokerd?™"),
and define d7: G1F — G9! F as the composite
G1F — cokerd?™! — G%(cokerd?™ ') = g7t F.

Now G471 F is flabby because it is GO of some sheaf, and the sequence
is exact because cokerd?—! — G411 F is monic. e

Corollary 6.74. Every injective sheaf £ over a space X is flabby.

Proof. ltis easy to see that every direct summand of a flabby sheaf is flabby.
By Proposition 6.73(i), there is an exact sequence 0 — & — G'¢ —
gl /€ — 0, and GO¢ is flabby. But this sequence splits, because £ is in-
jective; thus, £ is a direct summand of GO€ and, hence, it is flabby. e

Flabby sheaves give another construction of sheaf cohomology.

Definition. The flabby resolution G*F in Proposition 6.73(ii) is called the
Godement resolution of F.

Proposition 6.75. Let F be a sheaf over a space X.

W If0 > F - F s F' = 0is an exact sequence of sheaves
with F' flabby, then 0 — I'(F') — I'(F) — I'(F") — 0 is an exact
sequence of abelian groups.

(ii) Let0 — L — L — Q — 0 be an exact sequences of sheaves. If L'
and L are flabby, then Q is flabby.
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(iii)
(iv)
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Flabby sheaves L are acyclic.

HY(T(G*F)) = HI(F) for all ¢ > 0, where (G*F)” is the deleted
Godement resolution of F.

Proof.

@

(ii)

(iii)

It suffices to prove that ¢y : T'(F) — ['(F"), given by px: s > @s, is
epic. Let s” € F'(X) = I'(F"). Define

X={U,s): U< Xisopen,s € F(U),ps =s"|U}.

Partially order X by (U,s) < (Up,s;) if U € Uy and 51|U = s. It
is routine to see that chains in X have upper bounds, and so Zorn’s
Lemma provides a maximal element (Uy, so). If Uy = X, then s is a
global section and @y is epic. Otherwise, choose x € X with x ¢ Up.
Since ¢: F — F” is an epic sheaf map, it is epic on stalks, and so
there are an open V € X with V > x and a section t € F(V) with
pt = s"|V. Nows —t € F(UNYV) (weregard t: F' — F as
the inclusion), so that 7’ flabby provides r € F'(X) extending s — ¢.
Hence,s =t +r|(UNV)in F(U N V). Therefore, these sections may
be glued: thereiss € F(UUV) with§|U = s and s|V =t+r[(UNV).
But ¢(5) = s”, and this contradicts the maximality of (Uy, s¢).

Let U C X be open, and consider the commutative diagram

F(X) —25 77(x)

FU) —=F'U).

where p, p” are restriction maps. Since F is flabby, p is epic. We
have exactness of 0 — F'|U — F|U — F"|U — 0, for exactness
of sheaves is stalkwise. As mentioned earlier, 7’ flabby implies F'|U
flabby, so that part (i) gives ¢y epic. Therefore, the composite gy p =
0" @x is epic, and hence p” is epic; that is, F” is flabby.

Let £ be flabby. Since there are enough injective sheaves, there is an
exact sequence 0 — £ — £ — Q — 0 with £ injective. Now & is
flabby, by Corollary 6.74, and so Q is flabby, by part (ii). We prove
that H7(L) = {0} by induction on ¢ > 1. If ¢ = 1, the long exact
cohomology sequence contains the fragment

HY&) — HYQ) - H'(L) > H'(©&).
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Since H'(£) = {0}, we have H'(L£) = coker(T'(£) — I'(Q)). But this
cokernel is 0, by part (i), and so H '(£) = {0}. For the inductive step,
consider the fragment

HY(Q) — HITY (L) - HITL(E).

Now HIt1(E) = {0}, because & is injective, while H7(Q) = {0}, by
the inductive hypothesis (which applies because Q is flabby). There-
fore, exactness gives HI (L) = {0}).

(iv) Since the homology functors defined from flabby resolutions are efface-
able, by part (iii), the result follows from uniqueness, Corollary 6.66. e

Corollary 6.76. If S = x.A is a skyscraper sheaf over a space X, where
x € X and A is an abelian group, then H1(X, S) = {0} for all ¢ > 1.

Proof.  Skyscraper sheaves are flabby. e

There are other kinds of sheaves that are convenient when the base space
X is paracompact.

Definition. A topological space X is paracompact if it is Hausdorff and
every open cover U of X has a locally finite refinement. An open cover V
is locally finite if each x € X has an open neighborhood N that meets only
finitely many V € V; thatis, N NV # & for only finitely many V € V.

Of course, compact Hausdorff spaces are paracompact, and a theorem of
A. H. Stone (“Paracompactness and product spaces,” Bull. AMS 54 (1948),
977-982) says that every metric space is paracompact.

Definition. A sheaf F over a paracompact space X is fine if, for every
locally finite open cover U = (U;);e; of X, there exists a family of sheaf
morphisms (;: F — F)iey, called a partition of unity subordinate to U,
such that

(i) for each i € I, there is an open neighborhood V; of the complement of
U; on which »; is trivial; that is, n; F (W) = {0} for all open W C V;,

(i) Y ;m = 1r.

For example, sheaves of differentials on a paracompact manifold are fine;
they comprise the de Rham complex, which, by the Poincaré Lemma, is a
fine resolution of the constant sheaf R (see Bott—Tu, Differential Forms in
Algebraic Topology, p. 35). Fine sheaves are acyclic (Gunning, Lectures
on Riemann Surfaces, p. 36; Wells, Differential Analysis on Complex Mani-
folds, Chapter 11 §3). Moreover, every sheaf over a paracompact space can be
imbedded in a fine sheaf, and so sheaf cohomology can also be computed in
terms of fine resolutions.
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6.3.1 Cech Cohomology

There is another construction of cohomology of sheaves, called Cech co-
homology. Although its definition seems complicated, Cech cohomology is
more amenable to computation than is sheaf cohomology.

Recall Example 1.3(x): if i/ = (U;);e; 1s an open cover of a topological
space X, then the nerve N (U) is the abstract simplicial complex with vertices
Vert(N (UU)) = U and g-simplexes all (¢ + 1)-tuples o of distinct open sets,
o = Wiy, ..., U, 1, with Ly Ui, # 2.

Example 6.77.

(1) Let K be an abstract simplicial complex. Recall the complex

Cu(K) =— Cy(K) 5 Cyr(K) -,

that we constructed in Chapter 1: the term C,(K) is the free abelian
group with basis all g-simplexes o = [v;, . .., vj, ], and the differential
0g: Cy(X) = Cy—1(X) is

q
99(0) = 0glvo. ..., vgl = D (=D'[vo. ... i ... vg].
i=0

If G is an abelian group, then C4(K, G) = Homz(C,(K), G) is called
the simplicial g-cochains with coefficients in G. Since C,(K) is free
abelian, a g-cochain f: C,(K) — G is determined by its values on
the basis ¥, (K), the family of all g-simplexes in K. Thus, we may
view f as a function X,(K) — G. The differential §7: CY(K, G) —
C9t1(K, G) is the induced map f > fog: if f is a g-cochain, then
81 f € C?*t(K, G) is defined on a (g +1)-simplex © = [vj, ..., vl-qﬂ]
by

@1 f)(x) = foq(r)
= faq[v,'o, ey viqﬂ]

q+1

= [ i B vy
Jj=0

q+1

= Z(—l)ff[vio, e D Vig )
=0

The homology groups of the complex Homz(C,(K), G) are called the
simplicial cohomology groups of K with coefficients in G.
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(i1) Recall that the singular complex of a topological space X is (S¢(X), 9),
whose gth term S, (X) is the free abelian group with basis X, the fam-
ily of all g-simplexes o : A? — X, where A7 is the standard g-simplex.
The differential 9, : S;(X) — S;-1(X) has a formula similar to that in
part (i). If G is an abelian group, we define the singular cohomology
groups of X with coefficients in G to be the homology groups of the
complex Homz(S.(X), G). <«

Since N (), the nerve of an open cover U of a space X, is an abstract sim-
plicial complex [see Example 1.3(x)], the last example shows how to define
cohomology groups of N ({/) with coefficients in an abelian group G. If & is
the set of all the g-simplexes in N (Uf), then a g-cochain is a Z-linear combi-
nation of functions f: £, — G.If T = [Uj, ..., Ui ] isa (g +1)-simplex,

define
q+1

@) (@) =Y (=D flUi. ... Uy ... Uiy, 1

Jj=0

We obtain a complex of abelian groups C*(N (i), G).

Definition. The homology groups of the complex C*(N (U), G) are called
the cohomology groups of the open cover U with coefficients G, and they are
denoted by

HiU, G).

We now modify this construction by replacing an abelian group G by a
sheaf of abelian groups F over a space X. Given an open cover I/ of X, define
the group C9(U, F) of g-cochains by

cluF =[] FW,n---nU,

where the product is over the set X, of all g-simplexes in N(Uf). Let us
rephrase this. A g-cochain with coefficients in F is a function

f:3g— | FWo,
o€,
where o = [Uj,..., U] € Z4 and U, = Uiy N--- N Ui, Define the
differential 87: C4(U, F) — CIT1 (U, F) by
g+1

@1 f)((Uigs .- Uiy ) = Y (=1 f(Wigs ... Uy ..., Uiy, 1),

j=0

We obtain a complex of abelian groups C*(N (Uf), F).
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Definition. The homology groups of the complex C*(N (i), F) are called
the cohomology groups of the open cover U with sheaf coefficients F, and
they are denoted by

HIU, F).

We would like to use Corollary 6.49 to show that HY U, F) coincides
with sheaf cohomology H?(F) but, alas, it may not apply, as part (v) of the
next example shows: a short exact sequence of sheaves 0 — F — F —
F” — 0 need not give a long exact cohomology sequence

— HIU,F)—> HIU,F) — HIU, F") > HIT' U, F) - .

This does not say that HYU,O) is irrelevant, but it does say that we may
have to add some hypotheses to guarantee that the two cohomologies agree.

Example 6.78.
(1) For any any sheaf F over X and any open cover U/, we claim that
H'U, F) =T(F) = F(X).

To see this, it is clearest to describe 87: C1(U, F) — CItL(U, F)
more precisely. Formally, a g-cochain f is a function

{g-simplexes [Up, ... Ul e NaD} — | FWon---nU,)

with f([Up, ..., Uy]) € F(UpN---NU,). Thus, f lies in the direct
product ]_[[U0 .... U,] F(UoN---NUy,), and it can be written as a tuple

= Gp,...u,0)-

where sy, ... U, € FUo N ---NUy,). Therefore, a O-cochain is a
tuple of sections (sy), where sy € F(U), while a 1-cochain is a tu-
ple of sections (f[y,v]) indexed by all 1-simplexes [U, V] € NU),
where #7,v) € F(U N'V). The differential 8°: COU, F) — C'U, F)
sends (sy) — (pl‘]/nvsv — pgmvsU), where pl‘]/mv is the restriction map
F(V) = FWUNV). Thus, (sy) € ker8? if the family of sections satis-
fies the equalizer condition. Since F is a sheaf, there is a unique global
section of F obtained by gluing these local sections. We conclude that
HOU, F) = ker§° = I'(F).

(i1) If K is a simplicial complex K and G is an abelian group, then Cq(K)
is the complex of simplicial chains and H?(K, G) is the homology of
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Homyz(C.(K), G). But C,(K) is the free abelian group with basis all
g-simplexes in K, and so a map f € Hom(C,(K), G) is just a function
with f (o) € G for every g-simplex o in K.

Let G be the constant sheaf at G over a space X. If U/ is an open cover of
X, we claim that HY (U, G) is the simplicial cohomology HY (N (U), G):
after all, a g-cochain f € CY9(U, G) is just a function that satisfies
fWWo,....U;) € GWoN---NU;) = G for every g-simplex
[Uo, ..., Uy]l. Thus, Hom(C,(NU)), G) = C4U,G), and we have
HI(NU), G) = HIU, G).

(iii) If K is a simplicial complex, then dim(K) < n if K has no (n + 1)-
simplexes. In this case, H?(K) = {0} forall g > n. Now dim(N (U)) <
n for some open cover U it Uy N --- N U,4+1 = & whenever all U; € U
are distinct. In this case, HY U, F) = {0} for every sheaf F and all
q > n.

(iv) If U = {X}, the open cover consisting of X itself, then dim(N (U/)) < 0,
and so part (iii) gives H? (U, F) = {0} for every sheaf F and all ¢ > 1.

(v) An exact sequence of sheaves 0 — F' — F — F’ — 0 may not give

a long exact sequence. For example, 0 - Z — O B 0% 5 0isa
short exact sequence of sheaves over the punctured plane X = C — {0}
(see Example 6.69). If I/ = {X} is the open cover consisting of X itself,
consider the sequence

0— H'U,Z) - H'U,0) - H'U, 0 - H' U, 7). (1)

By part (i), H'(U, F) = I'(F), while part (iv) gives H' (U, Z) = {0}.
Example 6.69 shows that I'(O) — I'(O*) is not surjective and, hence,
sequence (1) is not exact.

(vi) The cohomology groups HiU, F) may depend on the open cover.
There is an open cover V = {V1, V3, V3} of the punctured plane X =
C — {0} with V; N V; # @ for all i, j but with Vi NV, N V3 =
Thus, N(V) is a trlangle that is, N(V) ~ S!. But if Z is the constant
sheafZ then part (ii) gives H! (V 7Z) = H'(S',Z) = Z. In contrast, if
= {X}, then part (iv) gives H! U,zy={0}. =

Here is a sketch of a way to compare HY U, F) and HY(F).

Lemma 6.79. Let U be an open cover of a space X, and let F be a sheaf of
abelian groups over X.
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(1) There is an exact sequence of sheaves
0> F—UF) - UF - UF) — 2)
with T'(C1(U, F)) = C1U, F) for all g > 0.

(ii) If F is flabby, then €1 (U, F) is flabby for all ¢ > 0, and so (2) is a
flabby resolution.

Proof. Godement, Topologie Algébrique et Théorie des Faisceaux, pp. 206—
207; see our Section §10.8 for more details. e

We can now construct a map relating open covers and sheaf cohomol-
ogy; unfortunately, this construction may not give an isomorphism without
additional hypotheses.

Proposition 6.80. [fU = (U;);cy is an open cover of a space X and F is a
sheaf of abelian groups over X, then for each q = 0, there is a natural map
el H1U, F) — HI(F).

Proof. Consider the following diagram of sheaves:
0—F —U,F)—'UF)—CU,F) —
[ | [
17 | | |

\ \ \
0 F 50 51 82 s

where the bottom row E is an injective resolution of F in Sh(X). Let f =
(f7) be a chain map €*(U, F) — E of sheaves over 1r arising from the
Comparison Theorem. Applying the global section functor I' gives a chain
map I'f: T'€*(U, F) — TE7 of complexes of abelian groups. Note that
resu, 7y =c*U, F), so that

H*(TC*U, F)) = H*(C*U, F)) = H* U, F).

On the9therhand, H*(TE”) = (R*T")F = H*(F). Therefore, o =H*Tf)
maps H*(U, F)) — H*(F). e

Cech cohomology HY (X, F) will be defined as a direct limit of HY U, F)
over all open covers U, so that it will be independent of the choice of I/. Let
us begin by trying to partially order the open covers of X.

Definition. An open cover V of X is a refinement of an open cover U,
denoted by V > U, if, for each V € V, there exists U € U with V C U. For
each V € V, achoice of U € U with V C U defines a functionr: V — U
with r(V) = U, which we call a refining map (there are many refining maps
for each pair V > U).
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Of course, every subcover of an open cover U is a refinement of /.

We want the family of all open covers of X to be a partially ordered set
under refinement, but there are two difficulties. The first problem is whether
refinement is a partial order. It is easy to see that VV > U is reflexive and
transitive, but it may not be antisymmetric. Recall that an open cover U is
an indexed family &/ = (U;);e; [indices are needed to define the simplexes
in the nerve N (U), and the ordering of the vertices in a simplex is needed
to define differentials]. Suppose that X = U; U U,, where Uj, U, are open
sets. The open covers {U1, Uz} and {U;, U1} are distinct, yet each refines the
other. To surmount this difficulty, we will partially order the homology groups
HY (U, F) instead of the open covers.

Recall that a simplical map f: K — L, for simplicial complexes K
and L, is a function f: Vert(K) — Vert(L) such that [ fvg, ..., fvg]is a
simplex in L for every simplex [vp, ..., vy] in K (we do not insist that the
vertices fvo, ..., fvy be distinct).

Definition.  Simplicial maps f, g: K — L are contiguous if, for every
simplex [v, ..., v4] in K, we have [ fuvo, ..., fvg, guvo, ..., gug] a simplex
in L.

Every refining map r induces a simplicial map rg: N(V) — NU): if
[Vo, ..., V4] is a simplex, define r#([Vo, ..., V,]) = [rVp, ..., rV,]. Note
that [V, ..., rV,] is a simplex in N(U), for (), rV; 2 (); Vi # @. Indeed,
if r, s: V — U are refining maps, then ry and s are contiguous, for ﬂi rvV; 2
(; Viand (; sV; 2 (); Vi; therefore, [rVo, ..., 7V, sVo, ..., sV,]is asim-
plex, for (), rV;N(;sVi 2 Vi # @.

Lemma 6.81.

(1) If K and L are simplicial complexes and f, g: K — L are contigu-
ous simplicial maps, then f* = g*: H1(K) — H9(L); that is, their
induced maps in cohomology are equal.

() If r: U — U is a refining map of an open cover of itself, then the
induced map r*: H1(U,F) — HIU, F) is the identity.

Proof.

(1) Itis proved in Munkres, Elements of Algebraic Topology, p. 67, that the
chain maps fi, g#: Ce(K) — Co(L) induced by f, g are homotopic,
and so the maps they induce in cohomology are equal.

(i) Both r: U/ — U and 1y, are refining maps, and so both induce the same
map in cohomology. e
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Definition. If F is a sheaf over a space X, define H U, F) < H , F)if
there exists a refining mapr: V — U.

Lemma 6.82. HYU,F) < H1(V, F) is a partial order.

Proof. Lemma 6.81 implies that there is at most one map HIV, F) —
HY(U{, F) induced by a refining map. The class of all H7(l{, F) and maps r*
induced by refining maps r is a category, and so Example 1.3(iii) shows that
{ HIWU, F) : U is an open cover of X } is partially ordered. e

The second difficulty in dealing with all the open covers of a space is
set-theoretical. Given open covers U/ and V), there is an open cover WV that
refines each: define W = (U N V)yeyand vey- It is possible that W has
many repetitions; for example, the empty set & can occur many times. Here
is the formal definition of an open cover (we have already explained why open
covers are indexed sets).

Definition. An open cover U = (U;);<; of a topological space X is an in-
dexed family of open subsets whose union is X; thus, U/ is a function I — 7,
where 7 is the family of all open subsets of X.

Since open covers may have repeated terms, any set is allowed to be an
index set. Thus, the number of terms in an open cover can be arbitrarily large,
and the class of all open covers of a space X is a proper class! Were it not for
this inconvenient fact, the class C of all HY U, F) would be a directed set.
Here is a way to deal with this. Informally, we say that a class K is a directed
class if it is a directed set whose underlying set may be a proper class.

Definition. A class K is a directed class if there is a relation k < k’ defined
on K that is reflexive, antisymmetric, and transitive, and, for each k, k¥’ € I,
there is k* € K with k < k* and k¥’ < k*. We say that a subclass £ C K is
cofinal in K if, for each k € IC, there exists £ € £ with k < £. We can also
define a direct system {A;, (p;} with indices lying in a directed class /.

Example 6.83. Let F be a sheaf over a space X. Lemma 6.82 and the
paragraph following it show that the class /C of all groups HY U, F), whered
varies over all open covers U of a space X, is a directed class. If U = (U;);er
is an open cover, let )V be obtained from {/ by throwing away repetitions; for
example, if U = {Up, U1, U}, then V = {Up, Uy}. It is clear that V is a
refinement of ¢/, and so

H = {PVI U, F) : U is an open cover having no repeated terms}

is a cofinal subclass of /. Indeed, H is a set, for if HY U, F) € 'H, then
U = (Uj)ies is an injective function I — 7, and so |I| < |7T] < 21X
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(because the topology 7 is a family of subsets of X). Thus, H is a directed
set for any sheaf F over X. <«

The next proposition says, under certain circumstances, that it is possible
to form direct limits over directed classes.

Proposition 6.84. Let IC be a directed class, let C be a cocomplete category,
and let { A, (pf} be a direct system in C over IC. If L and M are cofinal in
and both L and M are sets, then li_I)nL A = h_r)nM Ap.

Proof.  Let £ U M be the partially ordered subset of K generated by the
subsets £ and M. Note that each of £ and M is cofinal in £ U M because
each is cofinal in K; it follows that £ U M is directed. Since £ U M is a set,
the direct limit D = lim Ay is defined, and Exercise 5.22 on page 255
o T > LUM
giveslim . Ay =D Zlim, Ar. o
—L —M

Definition. Cech cohomology of a space X with coefficients in a sheaf F
over X is defined by

74 — 1 74
H (]—")_h_r>nHH u, F),

where H is the directed set of all cohomology groups HYU, F) with U an
open cover of X having no repeated terms.

It follows easily from Example 6.78(i) that H O(F) = I'(F) for every
sheaf F, and so H 0F) = HYF); that is, Cech cohomology and sheaf
cohomology agree in degree 0. It is true that they also agree in degree 1:
H Y(F) = H'(F) (Tennison, Sheaf Theory, p. 147), but they can disagree
otherwise.

Lemma 6.85. If F is an injective sheaf over a space X, then H(F) = {0}
forallg > 1.

Proof. Tennison, Sheaf Theory, p. 145. e

Theorem 6.86 (Serre). If0 — F — F — F" — 0 is a short exact
sequence of sheaves over a topological space X, then there is a six term exact
sequence in Cech cohomology:

0— H(F) — H(F) » H'(F")
— H'\(F) - H'(F) —» H' ().

Proof.  Serre, FAC, p. 217. o
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Although Serre’s paper FAC is concerned with sheaves over arbitrary
spaces, it also contains results about sheaves over Hausdorff spaces.

Given a sheaf F over a paracompact space X, it is easy to see that the
class of all H%(V, F), where V varies over all locally finite open covers of X
with no repeated terms, is cofinal in the directed set H.

Theorem 6.87 (Serre). If0 — F — F — F"” — 0 is a short exact
sequence of sheaves over a paracompact space X, then there is an exact se-
quence in Cech cohomology:

0— H'F) - H'(F) - H'(F")
— H' (F)— H' (F) - H' (F) - -
— HY(F') - HY(F) - HY(F") - HIT\(F) — .
Proof. Serre, FAC, p. 218. e

Theorem 6.88. If F is a sheaf over a paracompact space X, then Cech
cohomology agrees with sheaf cohomology: for all ¢ > 0,

HY(F) = HI(F).
Proof. Using Lemma 6.85, we see that the hypotheses of Corollary 6.49
hold for Cech cohomology over a paracompact space. e

The next corollary illustrates how Cech cohomology can be used.

Theorem 6.89. Let F be a sheaf over a paracompact space X. If X has an
open cover U with dim(N (U)) < n, then H1(F) = {0} forallq > n + 1.

Proof. Swan, The Theory of Sheaves, p. 109. e

Corollary 6.90. If X is a compact Hausdor{f space, then H9(F) = {0} for
large q.

Proof. Since X is compact, every open cover U of X has a finite subcover
V. But N(V) is a finite simplicial complex, and hence it is finite-dimensional.
Theorem 6.89 now gives HY (F) = {0} for all ¢ > dim(N (U£)), and Theo-
rem 6.88 gives HY(F) = {0} for all ¢ > dim(N (U£)). e

6.3.2 Riemann—-Roch Theorem

We end this chapter by describing the Riemann—Roch Theorem, first for the
Riemann sphere C = C U {oo} and then, more generally, for compact Rie-
mann surfaces. We shall see that the statement of this theorem involves a
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formula whose ingredients can be better understood in terms of sheaf coho-
mology. Although there are proofs of this special case of Riemann—Roch
without sheaves (see Fulton, Algebraic Topology, Chapter 21, or Kendig, Ele-
mentary Algebraic Geometry, Chapter V.7), both the statement and the proof
of its generalizations for higher-dimensional manifolds or for varieties de-
fined over fields of characteristic p > 0, involve sheaves in an essential way.
This discussion will illustrate how a sheaf, constructed using local data, yields
global information.
Recall some definitions from Complex Analysis.

Definition. Let U € C be open. A complex-valued function f is mero-
morphic on U if f is defined on U — D, where D is discrete and, for each
pelU,
f@ =) az—p)
n=m
for all z in some deleted neighborhood of p, where m € Z, a, € C, and
ay, # 0. We write
ord,(f) = m.

If m > 0, then p is called a zero of f of order m, and ift m < 0, then p
is called a pole of f of order |m|. Call f holomorphic (or analytic) if it is
meromorphic and has no poles.

This definition can be extended to the Riemann sphere C: if p = 00,
replace z by 1/z (basic open neighborhoods of co in C have the form Uy, =
{oo} U {z € C: |z] > N} for some number N). Thus, there is a pole of order
m at oo if f(1/z) has a pole of order m at 0.

Later, we will discuss generalizations of these terms for complex mani-
folds instead of C and, in particular, for Riemann surfaces.

The following query was posted on the newsgroup sci.math.

I know that the Riemann—Roch Theorem is a very famous the-
orem in Algebraic Geometry. I’'m an undergraduate student. I
don’t know the terms of Algebraic Geometry, but I want to grasp
the meaning of the theorem. Can you explain it in an elementary
way?

Keith Ramsay posted the following excellent reply.

There are various forms of the Riemann—Roch Theorem of
varying generality. The basic problem is to determine the func-
tions on a space that have prescribed poles. The space is typically
an algebraic variety, but you might find it easier to learn the ver-
sion of the theorem which is concerned with compact complex
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manifolds. In fact, the special case of compact Riemann surfaces
(i.e., compact complex manifolds of complex dimension 1) are of
enough interest to start out with.

A compact Riemann surface S has an invariant g, called its
genus. Roughly speaking, the genus is the number of holes in the
surface; a sphere has genus 0, a torus (a doughnut-shaped surface)
has genus 1, and so on. Given a list of points pyp, ..., p, on S and
a list of integers my, ..., m,, we’d like to have some information
about the meromorphic functions f on § that are holomorphic
except at the points py, ..., p,, where the orders of the poles are
prescribed; that is, ord,, (f) > —m; for all i. The set of all such
functions f is a complex vector space: if f satisfies the given
conditions and ¢ is a complex number, then cf also does; if g
satisfies the conditions, then so does f + g (the order of the pole
at a point can’t be any greater than the order of the poles of each
of f and g). Write m p1 +- - - +my, p, as just an abstract notation
describing the points and associated orders; this is called a divisor.
Note that every nonconstant meromorphic function f determines
a divisor: there are only finitely many points p1, ..., p, at which
f has either a pole or a zero, and we define

Div(f) = ordy, (f)p1 + - -+ ordp, (f) pa.

Define the degree of a divisor D = mp| + -+ + m, p, to be
> ;i mi; hence,

deg(Div(f)) =ordy, (f) +---+ord,, (f).

A theorem of Abel (see Fulton, Algebraic Topology, p. 267) says
that if f is a nonconstant meromorphic function, then Div( f) has
degree 0. If D =mp + - - - + my, py, write

L(D)
for the vector space of functions that satisfy the bounds on poles
at the points py, ..., p,. Now L(D) is finite-dimensional, and we
define

¢(D) = dim(L(D)).

For example, let S be the Riemann sphere. The meromor-
phic functions are just the rational functions (any meromorphic
function on the complex plane that isn’t rational has an essential
singularity at co). The functions having no poles except at co
are the polynomials, by Liouville’s Theorem. The space L (moo)
(here, we are taking only one point, namely, p; = 00) is the set
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of functions that are holomorphic except at co, where they’re al-
lowed to have a zero of order at most m. That’s just the set of
polynomials of degree < m. So £(moo) = m + 1, for the func-

tions 1, z, z2, ..., 2 form a basis. Here is a second example. The
space L(loo — 1(1 +1i)) (so py =oco,m; = l,and pp =1 + i,
my = —1) consists of those meromorphic functions with a zero

at 1 + i and, at worst, a pole of order 1 at oo. This is a sub-
space of L(100), and so it consists of just those functions of the
form c¢(z — 1 — i); hence, £(loo — 1(1 +i)) = 1. Similarly,
L(200 — 1(1 + 7)) is the space of all those functions of the form
(z — 1 —i)(az + b), so the dimension £(2c0 — 1(1 +1i)) = 2.
Generally, L(m1py + - - + my, py,) is the space of meromorphic
functions of the form

(Z—p) ™ (@ —p2) " (2= pp) ™ (coz + -+ ca),

whered = my +---+m, ifd > 0. (If d < 0, the only function
satisfying the conditions is the function identically 0.) So, on
the Riemann sphere we always get £(mipy + -+ + mupy) =
mi +---+m, +1=d + 1 unless that’s negative, in which case
we get L(mypy + -+ mypy) =0.

That’s a special case of Riemann—Roch for a Riemann surface
of genus g = 0. In this case, Riemann—Roch is enough to tell us
exactly what this dimension £ is. If D is a divisor of degree d < 0,
then there are no functions other than 0 satisfying the conditions,
and so £ = 0.

Theorem (Riemann-Roch). A compact Riemann surface of
genus g has a canonical divisor K = kipy + --- + ky,pn of
deg(K) = 2g — 2 such that

(D) —¢(K —D)=deg(D)+1—¢g
for every divisor D = mip1 + -+ - + mppy.

Notice that the formula displays a connection between topol-
ogy on the one hand (the genus) and analysis on the other (mero-
morphic functions). The equality is, of course, two inequalities.
Riemann proved that £(D) > d + 1 — g; a few years later, Roch
proved that £(D) =d + 1 — g+ £(K — D). Both mathematicians
died in 1866, and both died young; Riemann was 40 and Roch
was 26.

Riemann—Roch isn’t enough by itself to determine ¢ = £(D)
in every case but, in some special cases, it is enough. In particu-
lar, if d > 2g — 2, then the dual divisor has degree < 0, which

395
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simplifies the formula to
t=d+1-g.

So, for example, if g = 0 and d < 0, we know £ = 0; when g = 0
andd > 0, wehaved > 2g —2 = —2sothat{ =d+1—g =
d + 1, which is just what we figured out for the special case of the
Riemann sphere.

Ifg=1andd <0,wegetl{ =0;wheng =1andd > 0=
2¢ —2,wegetl =d+1—1=d. Butif d = 0, Riemann—Roch
isn’t enough to tell us whether £ = O or £ = 1, i.e., whether the set
of functions is {0} or {¢f : ¢ € C} for some nonzero function f.
Both cases occur. A curve of genus 1 with a specified basepoint p
is called an elliptic curve (different from an ellipse in Calculus).
The set of functions on an elliptic curve that have no poles is one-
dimensional; it consists of constant functions. So £(0p;) = 1.
But if p> is some point other than pq, the only function on the
elliptic curve having no poles except at p; (where it has a pole
of order at most 1) and a zero at p» is the zero function, so that
e(1py —1p2) =0.

This is the start of an interesting analysis of elliptic curves.
Since £(1p) = 1, L(1p) consists just of constant functions c;
since £(2p) = 2, we can see that L(2p) is a set of functions of
the form co + ¢ f for some f that has a pole of order exactly 2
at p. Likewise L(3p) is three-dimensional, so there’s some inde-
pendent function g in it that has a pole of order 3 at p; L(3p) =
{co+c1f+crg}. Now L(4p) is four-dimensional, but f2 is in it,
and is independent of 1, f, g,so L(4p) = {co+c1 f+crg+es f2).
Then L(5p) = {co + c1f + c28 + 3 f% + c4 fg}. Where it gets
interesting is when we get to L(6p), the set of functions having
no poles except at p, and having a pole of order at most 6 at p. All
of 1, f, g, f%, fg, f>, g are in this set. But since the set is only
six-dimensional and not seven-dimensional, there is some linear
dependence among them:

P =cof +eife+erft+ag+eaf +os.

So, if we plot the values of f and g on the plane, they fall within
this algebraic curve given by a cubic equation. In fact, the original
Riemann surface is essentially given by the cubic equation, and it
turns out to be an algebraic plane curve after all.

We introduce complex manifolds in order to discuss Riemann surfaces.
The definitions parallel those for (real) manifolds in Section §5.4.1.
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Definition. A complex n-chart is an ordered pair (U, ¢) with U a topologi-
cal space, called a coordinate neighborhood, and ¢: U — C" a homeomor-
phism.

We restrict our discussion to complex 1-charts, for we are interested in
spaces (Riemann surfaces) that only involve such charts; this simplification
allows us to avoid subtleties arising in the passage from functions of one com-
plex variable to several complex variables.

It is clear how to generalize the definition on page 393 of f being mero-
morphic from functions f defined on open subsets of the Riemann sphere to
coordinate neighborhoods of complex 1-charts.

Definition. Let (U, ¢) be a complex 1-chart. A complex-valued function f
is meromorphic on U if f is defined on U — D, where D is discrete and, for
each p e U, fo~!': img — C is meromorphic; that is,

fo '@ =" anz—o(p)"

n>m

for all z in some deleted neighborhood of ¢(p), where m € Z, a, € C, and
am, # 0. We write

ord,(f) = m.

If m > 0, then p is called a zero of f of order m, and if m < 0, then p is
called a pole of f of order |m|. Call f holomorphic if it is meromorphic and
has no poles.

All meromorphic functions on (U, ¢) form a commutative R-algebra
MU, ¢)

under pointwise operations, and all holomorphic functions on U form an R-
subalgebra:
O, ) € MU, ¢).

It follows that O(U, ¢) is a domain and that Frac(O(U, ¢)) € M(U, ¢); that
is, if f, g are holomorphic and g # 0, then f/g is meromorphic.

We now pass from complex charts to more interesting topological spaces:
complex manifolds.

Definition. A complex atlas of a 2-manifold X is a family of complex
1-charts ((U;, ¢;))ic; With (U;);ec; an open cover of X.

Let (Ui, ¢i))ic1 be a complex atlas of a 2-manifold. If p € U;, then ¢;
equips p with complex coordinates, namely, ¢; (p). Write U;; = U; N U;. If
Uij # @, then every p € U;; has two coordinates: ¢;(p) and ¢;(p).
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Definition. If ((U;, ¢;))ies is a complex atlas, then its transition functions
are the homeomorphisms

hij = <Pi<.0j_13 ¢jWij) — ¢i(Uij).

Transition functions compare the two coordinates of p € U;;: if y =
¢j(p) and x = @;(p), then hj;: y — x(y).

Definition. A complex 1-manifold is a 2-manifold having holomorphic tran-
sition functions, and a Riemann surface is a connected complex 1-manifold.

Viewing C as a Riemann surface, we need not treat oo differently from
other points (as we did on page 393), for we can use the complex 1-chart
(Uso, 90), Where U 1s an open neighborhood of co and ¢ : Use — Cis
the homeomorphism given by oo - 0 and p — 1/p if p # oo.

We now generalize the definitions of meromorphic, holomorphic, and 1-
forms from charts to Riemann surfaces.

Definition. If ((U;, ¢;))ics is a complex atlas of a Riemann surface X with
transition functions h;; = (pj(pi_l, then a family f = (f;: Ui — C)jes is
meromorphic (or holomorphic) if each f; is meromorphic (or holomorphic)
lie., fo; Vis meromorphic (or holomorphic)] and the f; are compatible; that
is,fihij = fj on ¢;(U; N Uj) for all i, j. At any point p € U;, there is a
Laurent expansion fi(z) = Y -, an(z — @i(p))". If fi is not identically
zero, then ord, ( f;) does not depend on the choice of the chart containing p,
and so, if f = (f;) and p € U;, we can define

ord, (f) = ord, (f;).

If m > 0, then f has a zero of order m at p; if m < 0, then f has a pole at p
of order |m|. We say that f is meromorphic on X if it is defined and mero-
morphic on the complement of a discrete subset of X, and f is holomorphic
if it is meromorphic on X and has no poles.

As in Example 5.77, we may define a sheaf M of fields over X [construct
sheaves M; over U; having global sections M(U;, ¢;), and glue them to-
gether using Proposition 5.76]. Meromorphic functions on a Riemann surface
X are the global sections of this sheaf; that is, they are compatible families of
locally defined meromorphic functions. Define Q°, the structure sheaf of X,
to be the subsheaf of M with QO(U;) = O(U;, ;) foralli € I. The ring of
holomorphic functions on X is

Q%(X) =I(X, Q%,

the global sections of QY Now Q°(X) isa subring of the field M (X) and so
it is a domain.
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One can define the de Rham complex of a Riemann surface and, indeed,
of higher-dimensional complex manifolds (see Bott—Tu, Differential Forms in
Algebraic Topology). However, as our aim is more modest, we will define
complex 1-forms in an ad hoc way. Define

Q' U, )

to be the free O(U;, ¢;)-module of rank 1 with basis element denoted by
dzi. If (Uj, ¢i))icr is a complex atlas for X, define Q! to be the sheaf with
Q') = @\, @;) that is obtained by gluing compatible sheaves over
U; (see Example 5.77). Thus, a complex 1-form ® on X is a global sec-
tion; that is, w is a compatible family of complex 1-forms w = (f; dzi)ier
with f; holomorphic. In a similar way, we may define meromorphic 1-forms
that, locally, look like g; dz; with g; meromorphic. More precisely, define
A4]::AA(®QOSﬂ.
Define

d: Q' - Q!

to be the sheaf map that is defined locally by
d: fi = fldz.

where, if f = (f;) and f;(z) = Y_,-0an2" then f/(z) = Y,  na,z" "

We are now going to discuss the Riemann-Roch Theorem for Riemann
surfaces (generalizing the special case for the Riemann sphere C). Given a
divisor D, we will see how the number ¢(D) and the canonical divisor K are
related to sheaf cohomology. Our account follows that in Serre, Algebraic
Groups and Class Fields, Chapter I1.

If X is a Riemann surface, let D(X) be the free abelian group with basis
the points in X. A divisor D is an element of D(X):

D = anp,

peX

where n,, € Z and almost all n,, = 0. The coefficients n,, of D will also be
denoted by v, (D), so that

D = anp = Z v, (D)p.

peX peX

The degree of D is
deg(D) = Y v,(D).
peX

If (Ui, ¢i))ier is a complex atlas for a compact Riemann surface X, then
the open cover (U;);<; has a finite subcover. It follows that a nonzero mero-
morphic function f € M(X) has only finitely many poles and zeros; define
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Div(f), the divisor of f, by
Div(f) = Y ord,(f)p.

peX
A divisor D is positive (or effective) if v,(D) > 0 for all p € X. In
particular, if f is meromorphic, then Div(f) is positive if and only if f is
holomorphic. Define

P(X)={D € D(X) : D = Div(f) for some f € M(X)}

[divisors of the form Div(f) are called principal divisors]. Since Div(fg) =
Div(f) 4+ Div(g), the subset P(X) is a subgroup of D(X); the quotient group
D(X)/P(X) is called the group of divisor classes. The subgroup P(X) de-
fines an order relation on D(X). Define

Dy <Dy if D,—Dje P(X).

We say that divisors Dy, D € D(X) are linearly equivalent if their cosets in
D(X)/P(X) are equal; that is, Dy = D1 + Div(f) for some meromorphic f.

Proposition A. If D € P(X), then deg(D) = 0.

Proof. See Gunning, Lectures on Riemann Surfaces, or Wells, Differential
Analysis on Complex Manifolds. e

It follows that we may define the degree of a divisor class: if Dy, D; are
linearly equivalent, then deg(D1) = deg(D>).

Given a divisor D, consider all those positive divisors D’ that are linearly
equivalent to D; that is, D’ > 0 (where 0 is the divisor identically zero) and
D’ = D + Div(f) for some f € M(X). Thus, Div(f) > —D. Define

L(D) = {0} U{Div(f) : f € M(X) and Div(f) > —D};
that is,
L(D) = {0} U{Div(f) : f € M(X) and ord,(f) > —v,(D) forall p € X}.

Recall that the constant sheaf F at M(X) has etale-sheaf (E, m, X),
where E, = M(X), and the sections over an open set U are locally constant
functions s: U — UpeX E, withrs = 1y. If U is an open neighborhood of
apoint p € X ands € F(U), then s(p) € M(X) has an order: define L(D),
to be all locally constant functions s : X — E satisfying v, (s(p)) > —v, (D).
Finally, define £(D) to be the subsheaf of F whose stalk over p is L(D) .

Proposition B. The vector spaces H(X, £(D)) and H' (X, L(D)) are finite-
dimensional.

Proof. See Gunning or Wells. e
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As in Ramsay’s exposition, define £(D) = dim(L(D)). Now
H°(X, L(D)) = T'(X, L(D)) = L(D),

and so
£(D) = dim(L(D)) = dim(HO(X, L(D))).

Define i (D) = dim(H (X, £(D))). In particular, if D = 0, then £(D) = O,
and s0 i (0) = dim(H' (X, 0)).

The following analog of Liouville’s Theorem holds for compact Riemann
surfaces.

Proposition C. If X is a compact Riemann surface, then L(0) = C.

Theorem 6.91. For every divisor D of a compact Riemann surface X, we

have
£(D) —i(D) =deg(D) + 1 —i(0),

where i (D) = dim(H (X, L(D))).

Proof.  The formula is true when D = 0: by Proposition C, we have £(0) =
1, while deg(0) = 0. Thus, the formula reads

1-i(0)=0+1-i(0).

Since any divisor D can be obtained from O in a finite number of steps,
each adding or subtracting a point, it suffices to show that if the formula holds
for a divisor D, then it also holds for the divisors D + p and D — p. Write

x(D)=4¢(D) —i(D) and x'(D)=deg(D)+1—i(0).

Now x'(D+p) = x'(D)+1, so that we must show that x (D+p) = x (D)-+1.
There is an exact sequence of sheaves

0— L(D)— LD+p) — -0,

where Q is the quotient sheaf. But Q is a skyscraper sheaf, with @, = {0} for
g # p while Q,, = C. The corresponding long exact sequence begins

0— L(D)— L(D+p) — H'(X, Q)
— H'\(X, £(D)) > H' (X, £(D + p)) > H' (X, Q).

But H%(X, Q) is one-dimensional, and H'(X, Q) = {0}, by Corollary 6.76,
for Q is a skyscraper sheaf. Hence, the alternating sum of the dimensions is 0:

D) — €D + p) +dim(L(Q)) — i(D) +i(D + p) = 0;

that is,
x(D+p)=x(D)+ 1

The same argument works for D — p. e
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Proposition D. If X is a compact Riemann surface of genus g, then i (0) = g.
Hence, for every divisor D of X, we have

L(D) —i(D) =deg(D)+1—g.

Proof. Serre, Algebraic Groups and Class Fields. p. 17, proves this assum-
ing that one can recognize the genus as the dimension of a certain space of
differential forms. Fulton, Algebraic Topology: A First Course, Chapter 21,
gives a more detailed discussion. e

The Riemann—Roch Theorem follows from this result once we show that
i(D) = £(K — D), where K is a canonical divisor (we will define K in a
moment).

Now M!(X) is a vector space over the field M(X); we claim that it is
one-dimensional. It can be proved that there always exists a nonzero mero-
morphic 1-form in MI(X ); choose, once and for all, one such, say, wy =
(woi)ier. It follows that M!(X) is a one-dimensional vector space over the
field M(X). Indeed, if ® = (w;)ic; € M'(X), then we construct a mero-
morphic i with @ = hwy as follows. Locally, wg; = fidz; and w; = g;dz;,
where f; is not identically zero. Then h; = g;/f; in M(U;, ¢;), and it is
straightforward to check that the family (%;);<; can be glued to define a global
meromorphic function & with w = hwg. Note that 1 € M(X) is unique be-
cause M (X) is a vector space over M (X).

Definition. If w is a nonzero meromorphic 1-form, then w = hwy; define
ord,(w) = ord, (h).

Since X is compact, the set of zeros and poles of a meromorphic function
h is finite, and so ord, (h) is nonzero for only finitely many points p. There-
fore, if w = hwy is a nonzero meromorphic 1-form, then ord,(w) = ord, (h)
is nonzero for only finitely many p.

Definition. If w € M!(X) is a nonzero meromorphic 1-form, define

Div(w) = Z ord, () p.

peX

If w is a nonzero meromorphic 1-form, then w = hwy and Div(w) =
Div(h) 4 Div(wp). Thus, all Div(w) are linearly equivalent, and they form a
single divisor class. Call

Div(wo) + P(X)

the canonical class; any divisor K in this class is called a canonical divisor.
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Definition. If D is a divisor, define
QD) ={0}U{w e MI(X) : Div(w) > D}.

Now if w is a nonzero meromorphic 1-form, then w = fwq for some
meromorphic f. Given a divisor D, the following statements are equivalent
for w = fwp:

w € Q2(D);

Div(w) > D;

Div(f) + Div(wg) > D;
Div(f) > Div(D) — Div(wy);
f e L(K—D).

Thus, Q(D) = L(K — D).

Serre proved HY(X, £L(D)) = Q(D) using Serre Duality (see Gunning,
Lectures on Riemann Surfaces, §5 and §6); actually, Serre Duality is the dif-
ficult part of the proof of the Riemann—Roch Theorem. It follows that

i(D) =dim(Q(D)) = (K — D).

The statement of the Riemann—Roch Theorem for compact Riemann sur-
faces is the same as for the Riemann sphere.

Theorem (Riemann—Roch). For every divisor D on a compact Riemann sur-
Jface of genus g, we have

¢(D) — ¢(K — D) = deg(D) + 1 — g.

All canonical divisors have the same degree, for they lie in the same
divisor class. If D = 0, then £(0) = 1, and the Riemann—Roch Theo-
rem gives £(K) = g. If D = K, then the Riemann—Roch Theorem gives
deg(K) =2g — 2.

There are fancier, more general, versions of the Riemann—Roch Theorem
that are needed to cope with complications arising from replacing compact
Riemann surfaces by compact complex manifolds of higher dimension or by
varieties in Algebraic Geometry defined over fields of positive characteris-
tic. One such version is due to Hirzebruch (Hartshorne, Algebraic Geometry,
p. 431), and an even more general version is due to Grothendieck, (Ibid.,
p. 436).



Tor and Ext

7.1 Tor

We now examine Tor more closely. As we said in the last chapter, all proper-
ties of Tor,’f (A, 1) must follow from Theorem 6.33, the axioms characterizing
it. In particular, its construction via derived functors need not be used (now
that existence of such functors has been proved). However, it is possible that
a proof of some property of Tor using derived functors may be simpler than
a proof from the axioms. For example, it was very easy to prove Proposi-
tion 6.18: Tor,’f (A, 0J) preserves multiplications, but it is not obvious how to
give a new proof of this fact from the axioms.

Theorem 7.1.
(1) If Risaring, A isaright R-module, and B is a left R-module, then
Tor® (A, B) = Tor®™ (B, A)
Sforall n > 0, where RP is the opposite ring of R.

@i1) If R is a commutative ring and A and B are R-modules, then for all
n=>0,
Tor® (A, B) = Tor® (B, A).

404 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9_7, (© Springer Science+Business Media LLC 2009
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Proof.

(i) Recall Exercise 1.11 on page 35: every left R-module is a right R°P-
module, and every right R-module is a left R°P-module. Choose a
deleted projective resolution P4 of A. Now r: P4 ®r B — B Qpop Py
is a chain map of Z-complexes, by Proposition 2.56, where

th: P, ®g B — B Qg P,

is given by #,,: x, ® b — b ® x,. Since each ¢, is an isomorphism of
abelian groups (its inverse is b ® x, — x, ® b), the chain map ¢ is an
isomorphism of complexes. Since isomorphic complexes have the same
homology (because each H, is a functor),

TorR(A, B) = H,(P4 ®& B) = H,(B ®go» P4)

for all n > 0. But P4, viewed as a complex of left R°P-modules,
is a deleted projective resolution of A qua left R°P-module, and so
Hy (B Qgoo P4) = Tork™ (B, A).

(i1) This is obvious from part (i). e

In light of this result, theorems about Tor, (A, [J) will yield results about
Tor, (L1, B); we will not have to say “similarly in the other variable.”

We know that Tor, vanishes on projectives for all n > 1; we now show
that they vanish on flat modules.

Theorem 7.2. If a right R-module F is flat, then Tor,’f(F , M) = {0} for all
n > 1 and every left R-module M. Conversely, ifTorf(F, M) = {0} for every
left R-module M, then F is flat.

Proof. Let P be a projective resolution of M. Since F is flat, the functor
F ®pg O is exact, and so the complex

FRrPy=—>FQrP,—> FQr P —> FQrPy— 0

is exact for all n > 1. Therefore, Tor,(F, M) = {0} foralln > 1.

1 . .
For the converse, ) - A — B exact implies exactness of

0=TorR(F, B/A) > F® A 2 F®B.

Hence, 1 ® i is an injection, and so F is flat. e

Here is another proof of Proposition 3.67. Recall that an exact sequence
0 - B’ - B — B” — 0 of left R-modules is pure exact if the sequence
of abelian groups 0 - A ®g B' - A ®r B — A ®r B” — 0 is exact for
every right R-module A.
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Corollary 7.3. A left R-module B" is flat if and only if every exact sequence
0 — B’ — B — B” — 0 of left R-modules is pure exact.

Proof. There is an exact sequence
Torf(A,B") > A®Qr B' - A®r B— A®g B” — 0.

Since B” is flat, Tor{e (A, B”) = {0}, by Theorem 7.2, and so the sequence of
Bs is pure exact.

Conversely, choose an exact sequence 0 — B’ = B — B” — 0 with B
free. For every right R-module A, there is an exact sequence

TorR(A, B) — TorR(A, B") > A®x B' -2 A®g B.

But Torf (A, B") = ker 1®i, for B free implies Tor{e (A, B) = {0}. By purity,
1 ® i is an injection; hence, Torf (A, By = {0} forall A, and B” is flat. e

The next corollary generalizes Exercise 3.32 on page 151.

Corollary 7.4. Let0 — A — B — C — 0 be an exact sequence of right
R-modules for some ring R. If C is flat, then A is flat if and only if B is flat.

Proof.  For any left R-module X, there is an exact sequence
Tor% (C, X) — TorR (A, X) — Torf (B, X) — Torf(C, X).

Since C is flat, the flanking terms are {0}, so that Tor{e (A, X) = Torf(B, X).
Therefore, if one of these terms is {0}, i.e., if one of them is flat, then so is the
other. e

Note that A, B flat does not imply that C is flat: For example, 0 — Z —
7Z — I, — 01is an exact sequence of abelian groups, but I, is not flat.

We are going to use a very general fact in the middle of the next proof. If
N is a submodule of a module M and there is a commutative diagram

of

M/N,

then (ker f)/N = Kkerh [since hg(m) = f(m) for all m € M, we have
m € ker f if and only if g(m) € ker h].

Theorem 7.5. The functors Tor,’f (A,0) and Tor,’f (O, B) can be computed
using flat resolutions of either variable; more precisely, for all flat resolutions
F and G of A and B, respectively, and for all n > 0,

H,(F4 ®g B) = TorX (A, B) = H,(A ®r Gp).
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Remark. There is a much simpler proof of this using spectral sequences;
see Corollary 10.23. <«

Proof. It suffices to prove that H,(F4 ®r B) = Tor,’f (A, B); the other iso-
morphism follows by replacing R by R°P; that is, by Theorem 7.1.

The proof is by dimension shifting; that is, by a slow starting induction
onn > 0.If

d: d
—>F2—2>—>F1—1>F0—>A—>0

. . di®1 .
is a flat resolution, then | ®g B 5 Fo®r B — AQ®r B — 0is exact,
and so

Ho(Fo ®r B) = coker(d; ® 1) = A ®g B = TorX (A, B).

For n = 1, there is a commutative diagram

d
F ! Fy
N
Y,

where Y = kerd;, i: Y — Fj is the inclusion, and di and d differ only in
their target. Applying [1 ® g B gives a commutative diagram

dy

F

di®1
FI®gB———"——>Fy®r B

%

im(d; ® 1) =im@ ® 1), H

di®1
Y.

Now

because right exactness of (] ®g B gives d| ® 1 surjective. Next, consider

d2®1 d1®1
F\ ®r B

-7
s~
o -
-

Fi1 Qr B/im(dz ®1)

|

Fi ®r B/ker(d; ® 1),

>, ®r B

Fo®r B

where « is the natural map. Since im(d, ® 1) € ker(d; ® 1), the enlargement
of coset map B is surjective, while y : F1 ® g B/ker(d; ® 1) is the injection
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of the First Isomorphism Theorem [whose image is im(d; ® 1]. If we define
3 = y B, the general fact mentioned before the theorem says that

keré = (ker(di ® 1)/ im(da ® 1) = H|(F4 Qg B).

On the other hand, im§ = imy (because § = yf and g is surjective). But
di ® 1 = yBa, so that im(d; ® 1) = imy (both 8 and « are surjective).
Therefore, H|(F4 ®g B) = imy = im(d; ® 1); butim(d; ® 1) = im(i ® 1),
by Eq. (1), so that H{(F4 ®r B) = im(i ® 1).

Consider the fragment of the long exact sequence for Tor:

TorR (Fy, B) — Torf (A, B) > Y @ B “2> Fy ®x B.
Now Torf(Fo, B) = {0}, because Fj is flat (Theorem 7.2), so that
Torf (A, B) = ker(i ® 1).

Hence, Tor; (A, B) Eker(i ® 1) = H|(Fs ® B).
For the inductive step n > 1, there is an exact sequence

Tor,+1(Fo, B) — Tor,+1(A, B) — Tor, (Y, B) — Tor,(Fop, B).

Since Fy is flat, the two ends are {0}, and Tor, (A, B) = Tor, (Y, B). Now
F=—-F, — F — Y — Oisaflatresolution of Y, and so H,(F'y ® B) =
Tor, (Y, B), by the inductive hypothesis. But H,(F'y ® B) = H,,+1(F4 ® B):
in the notation of F, both are (kerd,, 11 ® 1)/(imd,42 @ 1). o

Proposition 7.6. If (By)ieck is a family of left R-modules, then there are
natural isomorphisms, for all n > 0,

TorR (A, D Bk) = D Tork (A, By.
keK keK
There is also an isomorphism if the direct sum is in the first variable.

Proof.  The proof is by dimension shifting. The base step is Theorem 2.65,
for Torg (A, ) is naturally equivalent to A ® [1.
For the inductive step, choose, for each k € K, a short exact sequence

0— Ny —> P, — By — 0,

where Py is projective. There is an exact sequence

O—)@Nk%@Pk%@BkAO,
k k k
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and @, Py is projective, for every direct sum of projectives is projective.
There is a commutative diagram with exact rows:

il
Tor (A, @, Pr) — Tori (A, @B, Bx) >~ AQ P, Nk — A Q P, Px

i Pk

@k Tori (A, Py) — @k Tori (A, Bk)a? @k AQ N — @k AR Py,

where the maps in the bottom row are just the usual induced maps in each co-
ordinate, and the maps t and o are the isomorphisms given by Theorem 2.65.
The proof is completed by dimension shifting. e

Example 7.7.
(1) We show, for every abelian group B, that
Tor’(I,, B) = B[n] = {b € B : nb = 0}.

There is an exact sequence

072 7 51, >0,

where i, is multiplication by n. Applying [J ® B gives exactness of

1 n
Tory(Z, B) — Tor;(I,, B) = Z® B %' 7.® B.
Now Tor(Z, B) = {0}, because Z is projective. Moreover, 1 @ u, is
also multiplication by n, while Z ® B = B. In more detail, Z ® [
is naturally isomorphic to the identity functor on Ab, and so there is a
commutative diagram with exact rows:

0 B[n] B B

0——Tor;(I,,B) —=ZQ® B——7Z ® B.
1Q®un

By Proposition 2.71, there is an isomorphism B[n] = Tor (I, B).

(ii)) We can now compute Tor%(A, B) whenever A and B are finitely gen-
erated abelian groups. By the fundamental theorem, both A and B are
direct sums of cyclic groups. Since Tor commutes with direct sums,
TorlZ (A, B) is the direct sum of groups Tor]Z(C , D), where C and D are
cyclic. We may assume that C and D are finite; otherwise, they are pro-
jective and Tor; = {0}. This calculation can be completed using part (i)
and the fact that if D is a cyclic group of finite order m, then D[n] is a
cyclic group of order d, where d = (m, n) is their gcd. <«
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Proposition 7.8. If {B;, (p?} is a direct system of left R-modules over a
directed index set I, then for all right R-modules A and all n > 0, there
is an isomorphism

TorX(A, h_r)nB[) = h_r)nTor,If(A, B;).

Proof. The proof is by dimension shifting. The base step is Theorem 5.27,
for Torg(A, [J) is naturally isomorphic to A ® [.
For the inductive step, choose, for each i € I, a short exact sequence

0—- N; - P — B; — 0,

where P; is projective. Since the index set is directed, Proposition 5.33 says
that there is an exact sequence

0 — limN; — lim P; — lim B; — 0.
— — —

Now lim P; is flat, for every projective module is flat, and a direct limit of flat
modules is flat, by Corollary 5.34. There is a commutative diagram with exact
rOws:

Tory (A, lim ;) - Tori (A, lim B)"> A @ lim N; ~ A ® lim P,

|
| lf \La
. . \V . .
h_I)nTorl(A, P -~ h_r)nTorl(A, Bi)Z;» 1£1>1A QN; ~ IEI)IA ® P,
where the maps in the bottom row are just the usual induced maps between

direct limits, and the maps 7 and o are the isomorphisms given by Theo-
rem 5.27. The step n > 2 is routine. e

We can now augment Theorem 3.66.

Theorem 7.9 (Chase). The following are equivalent for a ring R.
(1) Every direct product of flat right R-modules is flat.
(ii) For every set X, the right R-module RX is flat.

(iii) Every finitely generated submodule of a free left R-module is finitely
presented.

(iv) R is left coherent.

Proof. 'The equivalence of the last three statements was proved in Theo-
rem 3.66. It is obvious that (i) = (ii), for R viewed as a right module over
itself is flat. We complete the proof by showing that (iii) = (i).
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Let (A;)ies be a family of flat right R-modules, and write A = ]_[iel A;.
Define the functor G: RMod — Ab on objects by G(C) = [[;(A; ®& C) and
onmaps f: C — C'by Gf: (a; ®c) — (a; ® fc). Itis easy to see that G is
an additive functor that is exact (because all the A; are flat). Define a natural
transformation 7: A @ 1 — G, where ¢ : (]_[,- A)Q®rC — ]_[i (A; ®r C)
is given by (a;) ® ¢ = (a; ® ¢).

Let C be a finitely generated left R-module, and let 0 - K — F —
C — 0 be an exact sequence, where F' is a finitely generated free module.
There is a commutative diagram with exact rows:

ARQRK —=AQr F——=AQ®r C ——=0.

TKi iw \ch i

0 GK GF GC 0.

Since GR = C and F = R", the additivity of G shows that tF is an isomor-
phism. Hence, if C is finitely presented; that is, if K is finitely generated,
then g is also a surjection. A diagram chase shows that t¢ is a surjec-
tion, and so the Five Lemma shows that t¢ is an isomorphism. Now K is
a finitely generated submodule of the free module F, so that K is finitely pre-
sented, by hypothesis; therefore, tx is an isomorphism. It follows that the
arrow A g K — A ®pg F in the top row is an injection. But exactness of
0 =Tor;(A, F) - Tori(A,C) > AQrK — AQ®g F allows us to conclude
that Tor; (A, C) = {0} whenever C is finitely presented.

Consider now any finitely generated left R-module C, and let0 — K —
F — C — 0 be an exact sequence with F' finitely generated free. The family
(K;)jes of all the finitely generated submodules of K forms a direct system
with H_rI)lKi = K, by Example 5.32(iii), and Exercise 5.21 says that C =
li_n)l(F/Ki). Now F/K; is finitely presented for all 7, so that Tor (A, F/K;) =
{0} for all i. Proposition 7.8 gives Tor;(A, C) = Tori(A, 1'£1>1(F/Ki)) =
li_r)nTorl(A, F/K;) = {0}. Thus, Tor;(A, C) = {0} for every finitely gener-
ated left R-module C. Therefore, Tor; (A, B) = {0} for every left R-module
B, by Proposition 3.48, and so Theorem 7.2 says that A is flat. e

Corollary 7.10. If R is left noetherian, then every direct product of flat right
R-modules is flat.

Proof.  Every left noetherian ring is left coherent. e
There are other constructions of Tor. For example, Tor% (A, B) can be

defined by generators and relations. Consider all triples (a, n, b), where a €
A, b € B, na = 0, and nb = 0; then TorIZ(A, B) is generated by all such
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triples subject to the relations (whenever both sides are defined)
(a + al’ n’ b) = (a? n’ b) + (a/7 n’ b)’
(a,n,b+b") = (a,n,b)+ (a,n,b),
(ma,n,b) = (a, mn, b) = (a, m, nb).
For a proof of this result, and its generalization to Tor,’f (A, B) for arbitrary

rings R, see Mac Lane, Homology, pp. 150-159 and Mac Lane, “Slide and
torsion products for modules,” Rendiconti del Sem. Mat. 15 (1955), 281-309.

7.1.1 Domains

We are now going to assume that R is a domain, so that the notion of torsion
submodule is defined.

Notation. Denote Frac(R) by Q and Q/R by K.

Lemma 7.11. Let R be a domain.
(1) If A is a torsion R-module, then Torf(K, A) = A.
(i1) For every R-module A, we have Torf(K, A) = {0} foralln > 2.
(iii) If A is a torsion-free R-module, then Tor{e (K, A) ={0}.
Proof.
(1) Exactnessof 0 - R — Q — K — 0 gives exactness of
Tori(Q,A) — Tori(K,A) > R®A - O R A.

Now Q is flat, by Corollary 5.35, and so Tor;(Q, A) = {0}, by Theo-
rem 7.2. The last term Q ® A = {0} because Q is divisible and A is
torsion (Proposition 2.73), and so the middle map Tor; (K, A) - RQA
is an isomorphism.

(i) The sequence Tor,(Q, A) — Tor,(K, A) — Tor,—1(R, A) is exact.
Since n > 2, we have n — 1 > 1, and so both the first and third Tors are
{0}, because Q and R are flat. Thus, exactness gives Tor, (K, A) = {0}.

(iii)) By Lemma 4.33(ii), there is an exact sequence ) - A — V — T — 0,
where V is a vector space over Q and 7 is torsion. Since every vector
space has a basis, V is a direct sum of copies of Q. Corollary 5.35 says
that Q is flat, and Lemma 3.46 says that a direct sum of flat modules is
flat. We conclude that V is flat. Exactness of 0 > A - V — V/A —
0 gives exactness of Torp(K, V/A) — Tori(K,A) — Tori(K, V).
Now Torp (K, V/A) = {0}, by (ii), and Tor (K, V) = {0}, for V is flat,
and so Tor; (K, A) = {0}. e
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The next result shows why Tor is so called.

Theorem 7.12. Torf(K , A) = tA for all R-modules A. In fact, the functor
Tor{e (K, O) is naturally isomorphic to the torsion functor.

Proof. Consider the exact sequence
Tory (K, A/tA) — Tori (K, tA) LAx Tor| (K, A) — Tor| (K, A/tA),

where ¢4, is the map induced by the inclusionis: tA — A. The first term is
{0}, by Lemma 4.33(ii), and the last term is {0}, by Lemma 7.11(iii). There-
fore, the map t4,: Tori(K,tA) — Tor; (K, A) is an isomorphism.

Let f: A — Bandlet f': tA — 1B be its restriction. The follow-
ing diagram commutes, because Tor (K, []) is a functor, which says that the
isomorphisms ¢4, constitute a natural transformation.

Tory (K, tA) -2~ Tor; (K, A)

7 |~

Tori (K, tB) TR Tor{ (K, B)
Proof of naturality is left to the reader. e

Corollary 7.13. Let R be a domain.
(i) For every R-module A, there is an exact sequence

0—>1tA—A—> Q®rA—> K®rA—DO.

(i) An R-module A is torsion if and only if Q @ g A = {0}.
Proof.
(1) In the exact sequence
Tori(Q,A) —» Tor|(K,A) > RQRA—> Q0QRA—> KRA— O,

O flat gives Tor; (Q, A) = {0}, Lemma 4.33(ii) gives Tor| (K, A) = tA,
and RQr A = A.

(i1) Necessity is Exercise 3.33 on page 152; sufficiency follows at once from
part (i). e

Another reason for the name Tor is that TorX is a torsion R-module for all
n>1.
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Lemma 7.14. If R is a domain and B is a torsion R-module, then Tor,ie (A, B)
is torsion for all A and for all n > 0.

Proof. The proof is by dimension shifting. If n = 0, then each generator
a ® b is torsion, and so Tor(l)e (A, B) is torsion.

If n = 1, there is an exact sequence 0 - N — P — A — 0 with P
projective, and this gives exactness of

0 = Torf (P, B) — Tork (A, B) - N ®z B.

Since N ®p B is torsion, so is its submodule Tor{e (A, B).
For the inductive step, look further out in the long exact sequence. There
is exactness

0 = TorX, (P, B) — TorX, | (A, B) — TorX (N, B) — TorX (P, B) = 0.

But Tor,’f (N, B) is torsion, by induction, and so TorrIfJrl (A,B) = Tor,’f (N, B)
is torsion. e

Theorem 7.15. If R is a domain, then Tor,lf (A, B) is a torsion module for
all A, B and alln > 1.

Proof. Letn = 1, and consider the special case when B is torsion-free. By
Lemma 4.33(i), there is an exact sequence

0O—-B—>V—>T-—=0,

where V is a vector space over Q and T = V/B is torsion. This gives an
exact sequence

TorR (A, T) — Torf (A, B) — Torf(A, V).

Now T0r§ (A, T) is torsion, by Lemma 7.14, while Torf (A, V) = {0}, be-
cause V is flat (V is a direct sum of copies of Q). Thus, Torf (A, B) is a
quotient of a torsion module, and hence it is torsion.

Now let B be arbitrary. Exactness of 0 — tB — B — B/tB — 0 gives
exactness of

Torf (A, tB) — Tor{ (A, B) — Torf (A, B/tB).

The flanking terms are torsion, for 7B is torsion and B/¢B is torsion-free.
Thus, Torf (A, B) is torsion, being an extension of one torsion module by
another. The proof is completed by dimension shifting. e
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7.1.2 Localization

We are now going to see that Tor gets along well with localization.

Proposition 7.16. Let R and A be rings, and let T: gkMod — 4Mod be
an exact additive functor. Then T commutes with homology; that is, for every
complex (C, d) € pComp and for every n € Z, there is an isomorphism

H,(TC,Td) = TH,(C,d).

Proof. Consider the commutative diagram with exact bottom row,

dy dn
Cn—H = Cn Cn-1
dr/z+1\L Tk
0 ——imdy4 7 kerd, H,(C) —0,

where j, and k are inclusions and d 41 18 just dp 1 with its target changed
from C, to imd,;. Applying the exact functor 7' gives the commutative
diagram with exact bottom row

Td, Td,
TCpy o rC, TCph_i

Td,’mj/ Trk
0—— T(imd,41) T) T (kerd,) —— T H,,(C) —— 0.

On the other hand, because T is exact, we have T (imd,+1) = im T (d+1)
and T (kerd, ) = ker(Td,), so that the bottom row is

0 — im(Tdy+1) — ker(Td,) - TH,(C) — 0.

By definition, ker(T'd,)/ im(Td,,+1) = H,(TC), and a diagram chase, Propo-
sition 2.70, gives H,(TC) = TH,(C). o

Localization commutes with Tor, essentially because S™'R is a flat R-
module.

Proposition 7.17. If S is a multiplicative subset of a commutative ring R,
then for all n > 0 and all R-modules A and B, there are isomorphisms,
natural in A and B,

S~ TorR(A, B) = Tor’ ' R(s™'A, S7'B).

Proof. First consider the case n = 0. For a fixed R-module A, there is a
natural isomorphism

Ta: ST (A®rB) — ST'A®¢ 1z ST!B,
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for either is a universal solution U of the universal mapping problem

STIAxST'B———U

where M is an S~! R-module, f is S~! R-bilinear, and fis an S~ R-map.

If Pp is a deleted projective resolution of B, then § ~1(Pp) is a deleted
projective resolution of S~!B, for localization is an exact functor that pre-
serves projectives. Naturality of the isomorphisms 74 p gives an isomorphism
of complexes

STHA®RPE) = ST A® 15 ST (Pp),

so that their homology groups are isomorphic. Since localization is an exact
additive functor, Proposition 7.16 applies: for all n > 0,

H,(S"HA Qg Pp)) = S 'H,(A®r Pp) = S~ TorR(A, B).

On the other hand, since S~} (Pp) is a deleted projective resolution of § -1B,
the definition of Tor gives

Hy(S'A®g 15 S (Pp) = TorS 'R(s~'A, 57 B).

Proof of naturality is left for the reader. e

Corollary 7.18. Let A be an R-module over a commutative ring R. If Ap, is
a flat Ryw-module for every maximal ideal m, then A is a flat R-module.

Proof. Since An, is flat, Proposition 7.2 gives Tor,lle ™ (Am, Bm) = {0} for all
n > 1, for every R-module B, and for every maximal ideal m. But Proposi-
tion 7.17 gives Tor,lf (A, B); = {0} for all maximal ideals m and all n > 1.
Finally, Proposition 4.90 shows that Tor,‘;e (A, B) = {0} for all n > 1. Since
this is true for all R-modules B, we have A flat. e

Lemma 7.19. If R is a left noetherian ring and A is a finitely generated left
R-module, then there is a projective resolution P of A in which each P, is
finitely generated.

Proof.  Since A is finitely generated, there exist a finitely generated free left
R-module Py and a surjective R-map ¢: Py — A. Since R is left noetherian,
ker ¢ is finitely generated, and so there exist a finitely generated free left R-
module P; and a surjective R-map di: Py — kere. Define D;: Py — Py
as the composite id;, where i : kere — Py is the inclusion; there is an exact
sequence

D
O—>kerD1—>P1—1>P0—£>A—>0.
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This construction can be iterated, for ker D is finitely generated, and the
proof is completed by induction. (We remark that we have, in fact, constructed
a free resolution of A, each of whose terms is finitely generated.) e

Theorem 7.20. If R is a commutative noetherian ring, and if A and B
are finitely generated R-modules, then Tor,lf (A, B) is a finitely generated R-
module for all n > 0.

Remark. There is an analogous result for Ext (see Theorem 7.36). <«

Proof. Note that Tor is an R-module because R is commutative. We prove
that Tor,, is finitely generated by induction on n > 0. The base step holds, for
A®p B is finitely generated, by Exercise 3.13 on page 115(i). If n > 0, choose

.. . d . .
a projective resolution - - - — P ~% Py - A — OasinLemma7.19. Since

P, ®g B is finitely generated, so are ker(d, ® 1p) (by Proposition 3.18) and
its quotient Tor,lf (A,B). o

Exercises

*7.1 If R is right hereditary, prove that T0r§.e (A, B) = {0} forall j > 2
and for all right R-modules A and B.
Hint. Every submodule of a projective module is projective.

72 If0 - A - B — C — 0is an exact sequence of right R-modules
with both A and C flat, prove that B is flat.
*7.3 If F is flat and w: P — F is a surjection with P flat, prove that
ker 7 is flat.

7.4 If A, B are finite abelian groups, prove that TorIZ(A, B) = A®y B.
7.5 Let R be a domain with Frac(R) = Q and K = Q/R. Prove that
the right derived functors of ¢ (the torsion submodule functor) are

R =¢t, Rt=K®rO, R't=0 foralln>2.

7.6 Let k be a field, let R = k[x, y], and let I be the ideal (x, y).
(i) Provethatx ® y — y ® x € I ®p [ is nonzero.
Hint. Consider (I/1%) ® (I/1?).
(ii) Prove thatx(x ® y — y ® x) = 0, and conclude that ] ®p [
is not torsion-free.

7.7 Prove that the functor T = Tor% (G, O) is left exact for every abelian
group G, and compute its right derived functors L, T.
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7.2 Ext

We now examine Ext more closely. As we said in the last chapter, all proper-
ties of Ext’, (A, [J) and Ext}s (L], B) must follow from the axioms characteriz-
ing them, Theorems 6.48 and 6.64. In particular, their construction as derived
functors need not be used. As for Tor, it is possible that a proof of some
property of Ext using derived functors may be simpler than a proof from the
axioms. For example, it was very easy to prove Proposition 6.38: Ext’y (A, [J)
preserves multiplications, but it is not obvious how to give a new proof of this
fact from the axioms.

We begin by showing that Ext behaves like Hom with respect to direct
sums and direct products.

Proposition 7.21.  If (Ap)rek is a family of modules, then there are natural
isomorphisms, for all n > 0,

Ext’ (@ Ax, B) = ]_[ Ext’ (A, B).

keK keK

Proof.  The proof is by dimension shifting. The step n = 0 is Theorem 2.31,
because Ext(,)e (O, B) is naturally isomorphic to Homg (LJ, B).
For the step n = 1, choose, for each k € K, a short exact sequence

0— Ly —> P.— Ay — 0,

where Py is projective. There is an exact sequence
O—>@Lk—>@Pk—> @Ak—>0,
k k k

and P, P is projective, for every direct sum of projectives is projective.
There is a commutative diagram with exact rows:

Hom(&D Py, B) ~ Hom(ED Ly, B) + Ext' (@ Ax, B) = Ext' (@ Py, B)

| ) i

[THom(Py, B) — [[Hom(Ly, B) = []Ext' (A, B) = []Ext' (P, B),

where the maps in the bottom row are just the usual induced maps in each
coordinate, and the maps 7 and o are the natural isomorphisms given by The-
orem 2.31. Now Ext'(@ P, B) = {0} = [][Ext' (P, B), because @ P,
and each Py are projective; thus, the maps 0 and d are surjective. This is
precisely the diagram in Proposition 2.70, and so there exists an isomorphism
Ext! (@D A, B) =[] Ext! (Ax, B) making the augmented diagram commute.
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We now prove the inductive step for n > 1. Look further out in the long
exact sequence. There is a commutative diagram

Ext" (€D Py, B) = Ext" () Ly, B) < Ext"+ (6 Ar, B) = Ext"+ (6D Py, B)
|
I
I
Y

[TExt" (P, B) — [T Ext"(Ly, B) = [TExt"*! (Ag, B) > [ Ext"*! (P, B),

where o : Ext"(€p Ly, B) — []Ext"(Lk, B) is an isomorphism that exists
by the inductive hypothesis. Since n > 1, all four Exts whose first variable
is projective are {0}; it follows from exactness of the rows that both d and
d are isomorphisms. Finally, the composite dod~!: Ext”“(@ Ar, B) —
[TExt"*! (A, B) is an isomorphism, as desired. e

There is a dual result in the second variable.

Proposition 7.22. If (By)rek is a family of modules, then there are natural
isomorphisms, for all n > 0,

Ext’,g(A, [T B¢) = [T Bxtaea, Bo.

keK keK

Proof.  The proof is by dimension shifting. The step n = 0 is Theorem 2.30,
for Ext’(A, O) is naturally isomorphic to the covariant functor Hom(A, [J).
For the step n = 1, choose, for each k € K, a short exact sequence

0— By —> E; — N, — 0,

where Ej is injective. There is an exact sequence 0 — [[, Bx — [[; Ex —
[1x N — 0, and []; Ex is injective, for every product of injectives is in-
jective, by Proposition 3.28. The proof finishes as that of Proposition 7.21.

[ ]

It follows that Ext” commutes with finite direct sums in either variable; of
course, this also follows from Ext" being an additive functor in either variable.

Remark. These last two proofs cannot be generalized by replacing direct
sums by direct limits or direct products by inverse limits; the reason is that
direct limits of projectives need not be projective and inverse limits of injec-
tives need not be injective. <«
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Example 7.23.

(i) We show, for every abelian group B, that if m > 2, then

Ext},(I,,, B) = B/mB.

There is an exact sequence

0722 7 51, -0,

where (,, is multiplication by m. Applying Hom([J, B) gives exactness

of Hom(Z, B) 22 Hom(Z, B) — Ext'(I,,, B) — Ext!(Z, B). Now
Ext!(Z, B) = {0} because Z is projective. Moreover, () is also mul-
tiplication by m, while Hom(Z, B) = B. More precisely, Hom(Z, [J)
is naturally equivalent to the identity functor on Ab, and so there is a
commutative diagram with exact rows:

B l B B/mB 0

Hom(Z, B) e Hom(Z, B) — Ext'(L,,, B) — 0.

By Proposition 2.70, there is an isomorphism B/mB = Ext!(I,,, B).

(ii)) We can now compute ExtIZ(A, B) whenever A and B are finitely gen-

erated abelian groups. By the Fundamental Theorem of Finitely Gen-
erated Abelian Groups, both A and B are direct sums of cyclic groups.
Since ExtlZ commutes with finite direct sums, ExtIZ(A, B) is the direct
sum of groups of the form ExtIZ(C , D), where C and D are cyclic. We
may assume that C is finite; otherwise, C = Z, and Ext! (C, D) ={0}.
This calculation can be completed using part (i) and Exercise 2.29 on
page 94: if D is a cyclic group of finite order m, then D/nD is a cyclic
group of order d = (m,n). <«

Definition. Given R-modules C and A, an extension of A by C is a short
exact sequence

0—>A—i>B—p>C—>O.

An extension is split if there exists an R-map s: C — B with ps = 1¢.

Of course, if 0 > A — B — C — 0 is a split extension, then B =

A @ C. The converse is false; there are nonsplit extensions with B = A @ C.
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Proposition 7.24. If Ext}e (C, A) = {0}, then every extension of A by C
splits.

Proof. Apply Hom(C,J) to 0 — A 5 B P4 € to obtain an exact

sequence Hom(C, B) AN Hom(C, C) —8> Ext'(C, A). By hypothesis,
Extl(C, A) = {0}, so that p, is surjective. Hence, there exists s € Hom(C, B)
with 1¢ = p«(s); thatis, 1¢ = ps, and this says that the extension splits. e

We will soon prove the converse of Proposition 7.24.

Corollary 7.25.

(1) A left R-module P is projective if and only if Ext}e(P, B) = {0} for
every R-module B.

(ii) A left R-module E is injective if and only ifExt}e (A, E) = {0} for every
left R-module A.

Proof.

(i) If P is projective, then Ext}e(P, B) = {0} for all B, by Corollary 6.58.
Conversely, if Ext}a(P, B) = {0} for all B, then every exact sequence
0 —- B - X — P — 0 splits, by Proposition 7.24, and so P is
projective, by Proposition 3.3.

(i1) Similar to the proof of (i), but using Proposition 3.40. e

The next definition arises from Schreier’s solution to the extension prob-
lem in Group Theory (see Proposition 9.12).

Definition. Given modules C and A, two extensions & : 0 - A — B —
C—>0and&¢ :0— A — B — C — 0of Aby C are equivalent if there
exists a map ¢: B — B’ making the following diagram commute:

§=0 i p

§=0

We denote the equivalence class of an extension £ by [£], and we define

e(C,A) = {[é] : € is an extension of A by C}.
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Example 7.26. If two extensions are equivalent, then the Five Lemma shows
that the map ¢ must be an isomorphism; it follows that equivalence is, indeed,
an equivalence relation (for we can now prove symmetry). However, the con-
verse is false: there are inequivalent extensions having isomorphic middle
terms. For example, let p be an odd prime, and consider the diagram with
exact rows

0 K G 0 0
lKi v ilQ
0 K—=G— 0 0

In the top row, K = (a), a cyclic group of order p, G = (g), a cyclic group
of order p2, i: K — Gisdefined byi(a) = pg, Q = G/imi, and 7 is the
natural map. In the bottom row, define i’(a) = 2 pg; note that i’ is an injection
because p is odd. Suppose there is a map ¢: G — G making the diagram
commute. Commutativity of the first square gives ¢(pa) = 2pa, and this
forces ¢(g) = 2g, by Exercise 7.8 on page 435. But commutativity of the
second square now gives g + imi = 2g + imi, which says that g € imi, a
contradiction. Therefore, the two extensions are not equivalent. <«

We are going to show that there is a bijection ¢ : e(C, A) — Ext!(C, A).
Given an extension £ : 0 - A — B — C — 0 and the chosen projective
resolution P of C (in the definition of Ext"), form the diagram

d d
P> P =P C 0
[ [ [
I aj | | o llc
y i Y
0 A B C 0.

By Theorem 6.16, the Comparison Theorem, there exist dashed arrows which
comprise a chain map («,): Pc — & over 1¢. In particular, the first compo-
nent ay: Py — A satisfies a1dy = 0; thus, d5 (1) = 0, a; € kerdj, and «;
is a cocycle. Define

¥:e(C, A) — Exth(C, A) by [£]+> cls(ay)

[recall that Ext}e (C,A) = (kerd})/(imd}) and cls(a;) = a1 +imd[]. To
see that ¥ is well-defined, we show that v does not depend on the chain map
(o) : Pc — & nor on the choice of extension in the equivalence class [£].

dy d
P——=P —=P

S1 ’
aq o 5

0——=A—>8B
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The Comparison Theorem says that if («;,): Pc — & is another chain map
over l¢, then (&) and («),) are homotopic: there are maps so and s; with
oy —ay = 0-s1+s0d; = sody, so that @] —ar; € imd] and cls(a1) = cls(a)).
To see that equivalent extensions £ and £ determine the same element of Ext!,
consider the diagram

P & Py & Py C 0
I e

§= 0 A B C 0
ol e

g 0 A B’ C 0.

Regarding the equivalence from row 2 to row 3 as a chain map over 1¢, we
see that the bottom row &’ gives the same cocycle a as does &.

Lemma 7.27. The function ¢ : e(C, A) — Ext}e(C, A), given by [£] —
cls(ay), is well-defined, and if € is a split extension, then ¥ : [£] — 0.

Proof. 'We have just proved that ¥ is is a well-defined function, for it is
independent of the choices. If £ is a split extension, thereisamap j: C — B
with pj = 1¢, and

Py P Py C 0
Lo e e
0 A B C 0

is a commutative diagram with ooy = 0. e

We will prove that ¥ is a bijection by constructing its inverse; to each
cocycle o: Py — A, we must find an extension of A by C. Let us begin by
analyzing the diagram defining the map «;.

Lemma 7.28. LetE =0 — X, NN Xo 25 C — 0 be an extension of a
module X1 by a module C. Given amap h: X1 — A, consider the diagram

&

: ?

6
I
o
>
e
o
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(1) There exists a commutative diagram with exact rows that completes the
given diagram:

0 X Xo C 0
SN
0 A B C 0.

(i) Any two bottom rows of completed diagrams are equivalent extensions.
Proof.

(i) Define B to be the pushout of j and 4. As in Lemma 3.41, let § C
A @ Xoby S = {(hx;, —jx1) : x1 € X1} and define B = (A & Xj)/S.
If we definei: A —- Bbyar (a,0)+ Sand B: Xo — B by xy —
(0, xp)+3S, then i is an injection and the first square commutes. It is easy
to check that n: B — C, given by (a, x9) + S +— ¢exg is well-defined,
the second square commutes, and the bottom row is exact.

(i) Let
0 X 4 Xo——=C 0
) e
0 A B’ C 0

be a second completion of the diagram. We must define 6: B — B’
making the following diagram commute.

0 A B C 0
Wl e
0 A——B C 0

Now 6, given by (a, xo) +S + i'a+ B'xo, is well-defined, and it makes
the diagram commute; that is, the extensions are equivalent. e

Notation. Denote the extension of A by C just constructed by

h

1

Here is the dual result.
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Lemma 7.29. LetE =0 — A — Yy — Y| — 0 be an extension of A
by Y1, where A and Yy are modules. Given a map k: C — Yj, consider the
diagram

A C
| f

A Yo Y, 0.

/:O

1]

P

(1) There exists a commutative diagram with exact rows that completes the
given diagram:

I

(i1) Any two top rows of completed diagrams are equivalent extensions.
Proof. Dual to that of Lemma 7.28; in particular, construct the top row using
the pullback of k and p. e
Notation. Denote the extension of A by C just constructed by

E'k.

Theorem 7.30. The function yr: e(C, A) — Ext'(C, A) isa bijection.

Proof. 'We construct the inverse 6 : Ext!(C, A) = e(C, A) of Y. Choose a
projective resolution of C,

d d
—>P2—2>P1—1>P0—>C—>O,

and choose a 1-cocycle 1: P — A. Since «g is a cocycle, we have 0 =
d;(a1) = aidy; thus, a induces a homomorphism @y : P/imd, — A [if
x1 € P, thenw; : x; +imds — «a(x1)]. Let E denote the extension

E=0— Pi/imdy > Ph— C — 0.

As in the lemma, there is a commutative diagram with exact rows:

0—— Pi/imd, Py C 0
EI‘L i’ﬁ i/]C
0 A - B C 0.

1
Define 6: Ext!(C, A) — e(C, A) using the construction in Lemma 7.28(ii):

0: cls(ay) — [ E].
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Let us see that 6 is independent of the choice of cocycle ;. If @] is another
representative of the coset o) + im di“, then there is a map s: Py — A with
o) = a1 + sdy. Butit is easy to see that the following diagram commutes:

P Py Py C 0
Oi/ a|+sd1l/ \Lﬂ-ﬁ-is \L]C
0 A B C 0.

As the bottom row has not changed, [ E] = [&/1 2].
It remains to show that the composites {0 and 6 are identities. If
cls(er;) € Ext!(C, A), then 6(cls(a)) is the bottom row of the diagram

Py Py Py C 0
o m e e
0 A B C 0,

and y0(cls(a1)) = cls(ap) because o is the first component of a chain map
Pc — 0O(cls(ay)) over 1¢; therefore, ¥/6 is the identity.

For the other composite, start with an extension &, and then imbed it as
the bottom row of a diagram, using Lemma 7.28(i).

0—— P/imd; 4 Py C 0
_ |
alJ« % ilc

0 A B C 0

Both & and & E are bottom rows of such a diagram, and so Lemma 7.28(ii)
shows that [£] = [o/1 E]. Hence, 61 is the identity, and 1 is a bijection. e

We can now prove the converse of Proposition 7.24.

Theorem 7.31. Every extension 0 — A B C — 0 splits if and
only if Exth(C, A) = {0}.

Proof.  Sufficiency is Proposition 7.24. For the converse, if every extension
is split, then |e(C, A)| is the number of equivalence classes of split exten-
sions. But all split sequences are equivalent, by Exercise 7.9 on page 435,
so that |e(C, A)| = 1. Therefore, |Ext}e(C, A)| = 1, by Theorem 7.30, and
Exth(C, A) = {0}. e

Whenever meeting a homology group, we must ask what it means for it
to be zero, for its elements can then be construed as being obstructions. Thus,
nonzero elements of Ext}e (C, A) describe nonsplit extensions (indeed, this
result is why Ext is so called).
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Example 7.32. If p is a prime, then Extlz(]l p:Ip) = 1, as we saw in Ex-
ample 7.23(i), so that | Exté (I,,I,)] = p. It follows from Theorem 7.30 that
there are p equivalence classes of extensions 0 — I, — B — I, — 0.
However, if |[B| = p?, then elementary Group Theory says that there are,
to isomorphism, only two choices for B, namely, B = sz or B = I,oI,
(two inequivalent extensions with middle group I > are displayed in Exam-
ple 7.26). Therefore, if mid(A, C) is the number of middle terms B in exten-
sions of the form0 —- A — B — C — 0, then mid(A, C) < |ExtIZ(C, Al;
moreover, this inequality can be strict. <«

Proposition 7.33.

(i) If F is a torsion-free abelian group and T is a group of bounded order
(i.e., nT = {0} for some positive integer n), then Ext'(F, T) = {0}.

(1) If the torsion subgroup tG of an abelian group G is of bounded order,
then tG is a direct summand of G.

Proof.

(i) Since F is torsion-free, it is a flat Z-module, by Theorem 4.35, so that
exactness of 0 — Z — Q gives exactness of 0 > Z® F - Q® F.
Thus, F = Z ® F can be imbedded in a vector space V over (Q, namely,
V = Q® F. Applying the contravariant functor Hom(O, 7) to 0 —
F — V — V/F — 0 gives an exact sequence

Ext!(V, T) — Ext'(F, T) — Ext*(V/F, T).

The last term is {0}, by Exercise 6.18 on page 376. Also, Ext'(V, T)
is a vector space over Q, by Proposition 6.19, so that Ext!(F, T) is
divisible. Now multiplication wu,: Q — @Q is an isomorphism, and so
the induced map 1 : Ext'(F, T) — Ext!(F, T) is an isomorphism.
On the other hand, multiplication u,: 7 — T is the zero map (since
nT = {0}), and so the induced map ', *: Ext!(F, T) — Ext'(F, T)
is the zero map. But both induced maps are multiplication by n, so
that Ext'(F, T) = {0}, as desired. (We have solved Exercise 6.20 on
page 377.)

(ii) To prove that the extension 0 — tG — G — G/tG — 0 splits, it
suffices to prove that Ext! (G/tG,tG) = {0}. Since G/tG is torsion-
free, this follows from part (i) and Corollary 7.31. e

Remark. Let T be a torsion abelian group. We say that 7" has Property S if,
whenever T is the torsion subgroup of a group G, then it is a direct summand
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of G [in homological language, a torsion group 7 has Property S if and only
if ExtIZ(C, T) = {0} for every torsion-free abelian group C]. We have just
proved that a group 7 of bounded order has Property S, and it follows easily
that a torsion group B @ D has Property S if B has bounded order and D
is divisible. The converse is true, and it follows from a theorem of Kulikov:
a pure subgroup of bounded order is a direct summand (see Fuchs, Infinite
Abelian Groups 1, p. 118). <«

Proposition 7.34. There exists an abelian group G whose torsion subgroup
is not a direct summand of G; in fact, we may choose tG = @p I,, where the
direct sum is over all primes p.

Proof. By Corollary 7.31, it suffices to prove that Ext]Z (Q, &b » 1[p) # 0,
where p ranges over all primes. In Exercise 3.31 on page 151, it is shown
that D = (J] 2 1p)/ (4 »1p) is a torsion-free divisible group; that is, D is a
vector space over (Q. Exactness of 0 — @p I, — ]_[p I, = D — 0 gives
exactness of

Hom(Q, [T1,) — Hom(@, D) - Ext! (@, @1,) — Ext' (2. [T1,).
P p

Now Hom(Q, ]_[p I,) = [[Hom(Q,I,) = {0}, by Theorem 2.31, while

Propositions 7.22 and 7.33(i) give Ext! (Q, [, I,)= [1, Ext!(Q, I,) = {0}.
Hence, 9 is an isomorphism. But Hom(Q, D) # {0}, because D is a nonzero
vector space over Q. Therefore, Ext!(Q, &) » I,) #{0}. e

It should come as no surprise that Ext! does not preserve infinite direct
sums. We just saw that Ext'(Q, @, 1) # {0}, while @, Ext'(Q, I,) = {0}.

Therefore, Ext! (Q, ®ply) Z @p Ext' (Q, I,).

7.2.1 Baer Sum

If Xisasetand ¥ : X — G is abijection to a group G, then there is a unique
group structure on X making it a group and v an isomorphism [if x, x’ € X,
then x = ¥~ (g) and x’ = ¥~ 1(g’); define xx’ = ¥ ~!(gg’)]. In particular,
Theorem 7.30 implies that there is a group structure on e(C, A). It was R.
Baer who made this explicit. If f: C — Aand g: C' — A’, define

f@®g:CoC - ADA by fdg:(c,d)r (fc,gd).

Define the diagonal map Ac: C — C & C by Ac: ¢ — (c,c), and define
the codiagonal map Vy: A@® A — A by Va: (a1,a) — a; + az. Letus
show thatif f, g: C — A are homomorphisms, then V4 (f ®g)Ac = f+g.
If ¢ € C, then

Va(f ®gAc:cr (c,0) = (fc,g0) = fc+ge=(f+g)c.
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Thus, if f, g: C — A, then the formula f 4+ ¢ = VA(f & g)Ac describes
addition in Hom(C, A). Now Ext! generalizes Hom [for Hom = Ext’], and
Baer mimicked this definition to define addition in e(C, A).

Definition. The direct sum of extensions

l'/

f=05A-5BCc50 and =054 5B 050
is the extension

e =0>A0A 2 BaB ™ coc >0

By analogy with the sum of two homomorphisms, define [£] + [£'] in

e(C, A) to be the function e(C, A) x e(C, A) — e(C, A) given by the com-
posite

(€1 ED = E@ET— [VEDE - [(V(E ®E)AL

Pay attention to the parentheses, for we have not proved that this operation
is associative (even though it is). The reader can check that this addition is
independent of the choice of representative; that is, if [§] = [&1] and [§'] =
[£]1, then [£] + [£'] = [&1] + [£]].

We will need three bookkeeping formulas. Recall that if £ is an extension
of A by C, then ¥[£] = cls(ay), where P is a projective resolution of C and
a1 is the first component of a chain map P — £ over 1¢.

Formulal. [ DE'] = Y [E]1DV[£'], where the right side is obtained from
the direct sum & @ &’ pictured below.
0—=PI®OP —= P ®Pj—=CpC —=0
1@ \L \Laoeaa(’) \L leger
0—=A®A ——BdB —=CodpC' —=0
We know that Ext! (C @ C’, A@ A’) is independent of the choice of projective
resolution of the first variable; hence, if P and P’ are chosen resolutions of C

and C’, respectively, then we may assume that P @ P’ is the chosen resolution
of Co C'.

FormulaIl. If[§] €e(C,A)andh: A — A/, then
V[hE] = hy[€] in e(C, A)).

This formula follows from the diagram

P Py Py C 0
N

§= 0 A B C 0
O

hé = 0 A’ E C 0.




430 Tor AND EXT CH.7

Formula III. If [£] € e(C, A) and k: C' — C, then [Ek] € e(C’, A); let
us denote the function e(C’, A) — Ext'(C’, A) by ¢’; that is, if P’ is the
chosen projective resolution of C’, then ¥'([§k]) = cls(k}), where k| is the
first component of a chain map P/, — &k over 1. We can now state the
formula:

V'Ekl = ylElk) in e(C, A).

Consider the diagram with middle row £k and bottom row &:

) d
P, P/ P, c’ 0
\L Vi i/ iyo llc/
0 A B’ c’ 0
bow
0 A E C 0.

Thus, ¥'[k] = y;. Having pictured y'([£k]), let us now picture ¥ [£]k].

P} P/ P} c’ 0
)y N

P P Py C 0
oy J J1e

0 A B C 0

Both y; and a1k are first components of chain maps P, — & over k. The
Comparison Theorem says such chain maps are unique to homotopy, and so
cls(y1) = cls(a1k)).

This formula will be used for [§ @ £'] € Ext'(C & C, A ® A), where
[€], [€'] € e(C, A), and the diagonal map A: C — C & C. The appropriate
diagram is

P P Py C 0

[ s s s

PbPe&P,—=PI®P —POPHh—=CHC—0

| wda] | | J1cac

0 ADA B®B ——=C&®C——0.

As in the proof of Formula I, we may assume that P @ P is the chosen projec-
tive resolution of C @ C. Furthermore, we also know that v is independent
of the chain map Pc — Pc @ P¢ over A. But the sequence of diagonal maps
Ay: P, — P, @ P, is a chain map over A, and so we may take A’l to be the
diagonal map.
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Theorem 7.35 (Baer). ¢(C, A) is an abelian group under Baer sum, de-
fined by
[E1+ (67 =[(VE @&))Al

andr: e(C, A) — Ext}e(C, A) is an isomorphism.

Remark. The associative law [(h&)k] = [h(Ek)] does hold, but we will not
need it in this proof. <

Proof. The formula for Baer sum defines a relation
p:e(C,A) xe(C,A) — e(C, A),

which we do not yet know is a function. After verifying Formula III, we saw
that we may assume here that A/ is a diagonal map.

YI(V(E ®EN)Al = y[VE @ ENA (Formula III)
= (VylE ®EDA (Formula IT)
=VlEl®vIE DA (Formula I)
=yE1+vE.

There are two conclusions from this computation. First, i o p is a func-
tion,! so that, since v is a bijection, p = v~ (y¥p) is also a function. Second,
V([E]+[E']) = w[E]+ Y[&'], so that p is the good addition on e(C, A) mak-
ing it a group and ¥ an isomorphism. e

One can prove directly [without using Ext' (C, A)] that e(C, A) is an
abelian group under Baer sum and that e(C, A) repairs the loss of exactness
after applying Hom to a short exact sequence (see Exercises 7.23 through 7.26
on pages 436—437). This approach has the advantage that it avoids choosing
resolutions of either variable, and no projectives or injectives are required!
This illustrates Mac Lane’s viewpoint that the Ext functors should be defined
by the axioms in Theorems 6.48 and 6.64, so that resolutions may be rele-
gated to their proper place as aids to computation. Baer’s description of Ext!
as e(C, A) has been generalized by N. Yoneda to a description of Ext" for all
n > 1. Elements of Yoneda’s Ext*(C, A) are certain equivalence classes of
exact sequences

0O0—-A—-B —---—>B,—>C—0,

11 et X,Y,Zbesets,andlet p € X x Y and ¥ C Y x Z be relations. Recall that the
composite ¥ o p is the relation

Yop={(x,z):thereisy € Y with (x, y) € p and (y, z) € ¥}.

In particular, it makes sense to consider the composite of a relation and a function.
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and we add them by a generalized Baer sum (see Mac Lane, Homology,
pp. 82-87). Thus, there is a construction of Ext” for all n > 1 that does
not use derived functors, projectives, or injectives.

Another construction of Ext}e (C, A) is given in the remark on page 512,
which mimics the homological classification of group extensions in terms of
factor sets.

Here are some localization results for Ext.

Theorem 7.36. If R is a commutative noetherian ring, and if A and B
are finitely generated R-modules, then Exty (A, B) is a finitely generated R-
module for all n > 0.

Proof. Since R is commutative, Extis an R-module. The proof, an induction
on n > 0 showing that Ext” is finitely generated, is essentially that of Theo-
rem 7.20 with J®pg B replaced by Hompg (L, B). If n = 0, then Homg (A, B)
is finitely generated, by Exercise 3.13 on page 115, for R is noetherian.” If

d
n > 1, choose a projective resolution --- — P L Py— A— 0, as in
Lemma 7.19. Since Homg(P,, B) is finitely generated, so are kerd; (by
Proposition 3.18) and its quotient Extz (A, B). e

Lemma 7.37. Let S be a multiplicative subset of a commutative ring R, and
let M and A be R-modules with A finitely presented. Then there is a natural
S~! R-isomorphism

ta.5: "' Homg(A, M) — Homg i x(S7 A, S™'M).
Proof. It suffices to construct natural isomorphisms
04: Homg(A, S™'M) — Homg 1 ,(S7'A, S7' M)

and
@a: S Hompg(A, M) — Homg (A, S™' M),

for then we can define t4 = 64¢4.

Assume first that A = R” is a finitely generated free R-module. If
ai,...,a,isabasis of A, then S~'A = S'R®p R" is a free S~! R-module
with basis a; /1, ..., a,/1. The map

O : Homg(A, S'M) — Homg-1x(S71A, S71M),

given by f +— f where f(a,-/cr) = f(a;)/o, is easily seen to be a well-
defined R-isomorphism.

ZExercise 3.13(iii) gives an example of a commutative ring R and finitely generated
R-modules A and B for which Hompg (A, B) is not a finitely generated R-module.
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If, now, A is a finitely presented R-module, then there is an exact sequence
R > R" > A — 0. )]

Apply the contravariant functors Homg (CJ, M’) and Homg-1  (CJ, M), where
M’ = S~'M is first viewed as an R-module; we obtain a commutative dia-
gram with exact rows

0 — Homg (A, M') —— Hompg(R", M) Hompg(R!, M)

I
04l Ogn l l@Rt
Y

0 = Homy (S~'A, M) = Hom ((S~'R)", M’) = Hom, ((S"'R)!, M),

where L = S™'R. Since the vertical maps Oz« and O are isomorphisms,
there is a dashed arrow 6,4 that must be an isomorphism, by Proposition 2.71.
If B € Homg (A, M), then the reader may check that

~

0a(B) =B:aj/o +— B(a)/o,

from which it follows that the isomorphisms 64 are natural.

Construct @4: S~'Homg(A, M) — Homg(A, S~'M) by defining
YA: g/0 — go,wWhere g5 (a) = g(a)/o. Now ¢4 is well-defined, for it arises
from the R-bilinear function S™'R x Homg (A, M) — Hompg(A, S_lM)
given by (r/0, g) > rg, [for S~ Homg (A, M) = ST'R®z Homg (A, M)].
Observe that ¢4 is an isomorphism when A is finitely generated free, and con-
sider the commutative diagram

0> S~!'Homg(A, M) = S~ Homg(R", M) = S~ Homg (R, M)

o) o | s

0 = Homg (A, S~'M) = Homg(R", S"'M) = Homg(R', S~ M).

The top row is exact, for it arises from (1) by first applying the left exact
contravariant functor Hompg ([J, M) and then applying the exact localization
functor. The bottom row is exact, for it arises from (1) by applying the left
exact contravariant functor Homg (O, S™'M). The Five Lemma shows that
@A 1s an isomorphism. e

Example 7.38. Lemma 7.37 can be false if A is not finitely presented. For
example, let R = Z and S~!'R = Q. We claim that

Q ®z Homz(Q, Z) 2 Homg(Q ®z Q, Q ®z Z).

The left-hand side is {0} because Homy(Q, Z) = {0}. On the other hand, the
right-hand side is Homz(Q, Q) = Q. <«



434 Tor AND EXT CH.7

Proposition 7.39. Let R be a commutative noetherian ring, and let S be a
multiplicative subset. If A is a finitely generated R-module, then there are
isomorphisms, natural in A, B,

STV Exth(A, B) ZExty_ ,(ST'A, S7'B)
forall n > 0 and all R-modules B.

Proof.  Since R is noetherian and A is finitely generated, Lemma 7.19 says
there is a projective resolution P of A each of whose terms is finitely gener-
ated. By Lemma 7.37, there is a natural isomorphism

ta.p: S~ Homg(A, B) — Homg i x(S"'A, S7!B)

for every R-module B (a finitely generated module over a noetherian ring
must be finitely presented). Now 74 p gives an isomorphism of complexes

S~!(Homg (P4, B)) = Homg-1x (S~ (P4), S B).
Taking homology of the left-hand side gives
H,(S™'(Homg (P4, B))) = S~ H,(Homg (P4, B)) = S Ext’(A, B),

because localization is an exact functor. On the other hand, homology of the
right-hand side is

H,(Homg-1 x(S™'(Pa), S™'B)) = Ext}_, ,(S7'A, S7'B),

because S~ (P,4) is an S~! R-projective resolution of S™'A. e

Remark. An alternative proof of Proposition 7.39 can be given using a
deleted injective resolution EZ in the second variable. We must still assume
that A is finitely generated, in order to use Lemma 7.37, but now we use the
fact, when R is noetherian, that localization preserves injectives. <«

Corollary 7.40. Let A be a finitely generated R-module over a commutative
noetherian ring R. Then Aw is a projective Ry-module for every maximal
ideal wv if and only if A is a projective R-module.

Proof.  Sufficiency is easy: if A is a free (or projective) R-module, then
S~1A is a free (or projective) S™'R-module for any multiplicative subset
S C R, for tensor product commutes with direct sums. In particular, if A
is projective, then Ay, is projective. Necessity follows from Proposition 7.39:
for every R-module B and maximal ideal m, we have

Exti (A, B)m = Ext_(Am, Bm) = {0},

because Ay, is projective. By Proposition 4.90, Ext}e (A, B) = {0} for all B,
which says that A is projective. e
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Exercises

*7.8 (i) Let G be a p-primary abelian group, where p is prime. If
(m, p) = 1, prove that x — mx is an automorphism of G.
(ii) If p is an odd prime and G = (g) is a cyclic group of order
p?, prove that ¢ : x > 2x is the unique automorphism with
¢(pg) =2pg.
*7.9 Prove that any two split extensions of modules A by C are equiva-
lent.
7.10 Prove that if A is an abelian group with nA = A for some positive
integer n, then every extension 0 - A — E — [, — 0 splits.
*7.11 (i) Find an abelian group B for which ExtlZ (Q, B) # {0}.
(ii) Prove that Q ®7, ExtlZ (Q, B) # {0} for the group B in (i).
(iii) Prove that Proposition 7.39 may be false when A is not
finitely generated, even when R = Z.
*7.12 Let E be a left R-module. Prove that E is injective if and only if
Ext}e (A, E) = {0} for every left R-module A.
*7.13 (i) Prove that the covariant functor £ = Exté(G, ) is right
exact for every abelian group G, and compute its left de-
rived functors L, E.
(ii) Prove that the contravariant functor F = EXtIZ(D, G) is
right exact for every abelian group G, and compute its left
derived functors L, F. (See the footnote on page 370.)
7.14 (i) If A is an abelian group with mA = A for some nonzero
m € Z, prove that every exact sequence 0 - A - G —
I, — 0 splits. Conclude that m ExtIZ(A, B) = {0} =
mExt} (B, A).
(ii) If A and C are abelian groups withmA = {0} = nC, where
(m, n) = 1, prove that every extension of A by C splits.
7.15 (i) For any ring R, prove that a left R-module B is injective if
and only if Ext}Q(R /1, B) = {0} for every left ideal /.
Hint. Use the Baer criterion.

(ii) If D is an abelian group and ExtIZ(Q/Z, D) = {0}, prove
that D is divisible. The converse is true because divisible
abelian groups are injective. Does this hold if we replace Z
by a domain R and Q/Z by Frac(R)/R?
7.16 Let G be an abelian group G. Prove that G is free abelian if and
only if ExtIZ(G, F) = {0} for every free abelian group F.
#7.17 Let A be a torsion abelian group and let S' be the circle group.
Prove that ExtIZ(A, Z) = Homgz(A, V).
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*7.18 An abelian group W is a Whitehead group if Extlz(W, Z) = {0}.3

(i) Prove that every subgroup of a Whitehead group is a White-
head group.

(ii) Prove that ExtIZ(A, 7Z) = Homgz(A, S1) if A is a torsion
group and S' is the circle group. Prove that if A # {0} is
torsion, then A is not a Whitehead group; conclude further
that every Whitehead group is torsion-free.

Hint. Use Exercise 7.17.

(iii) Let A be a torsion-free abelian group of rank 1; ie., A
is a subgroup of Q. Prove that A = Z if and only if
Homy (A, Z) # {0}.

(iv) Let A be a torsion-free abelian group of rank 1. Prove that
if A is a Whitehead group, then A = Z.

Hint. Use an exact sequence 0 - Z — A - T — 0,
where T is a torsion group whose p-primary component is
either cyclic or isomorphic to Priifer’s group of type p™.

(v) (K. Stein). Prove that every countable* Whitehead group
is free abelian.
Hint. Use Exercise 3.4 on page 114, Pontrjagin’s Lemma:
if A is a countable torsion-free group and every subgroup of
A having finite rank is free abelian, then A is free abelian.

7.19 We have constructed the bijection i: e(C, A) — Ext!(C, A) us-
ing a projective resolution of C. Define a function ¥': e(C, A) —
Ext!(C, A) using an injective resolution of A, and prove that 1’ is
a bijection.

7.20 Consider the diagram

& = 0 Ay By Ci 0
hi \Lk
& = 0 A B> Cy 0.

Prove that there is a map B8: By — B making the diagram com-
mute if and only if [h&]] = [£2k].
7.21 (i) Prove,ine(C, A), that —[£] = [(—14)E] = [E(—1¢)].
(ii) Generalize (i) by replacing (—14) and (—1¢) by p, for any
r in the center of R.

3 Dixmier proved that a locally compact abelian group A is path connected if and only
if A= R" @ D, where D is a (discrete) Whitehead group and D is its Pontrjagin dual.

4The question whether ExtIZ(G, Z) = {0} implies G is free abelian is known as White-
head’s problem. S. Shelah proved that it is undecidable whether uncountable Whitehead
groups must be free abelian (see Eklof, “Whitehead’s problem is undecidable,” Amer:
Math. Monthly 83 (1976), 775-788).
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7.22 Provethat [§] = [0 — A B> C— 0] € e(C, A) has finite
order if and only if there are anonzerom € Zandamaps: B — A
with si =m - 14.

*7.23 (i) Prove that ¢(C,): xkMod — Ab is a covariant functor
if, for h: A — A’, we define h,: e(C, A) — e(C, A’) by

(] [hE].
(ii) Prove that e(C, [J) is naturally isomorphic to Ext}e (c, 0.

7.24 Consider the extension x =0 — A’ —> A LA 0.

(i) Define D: Homg(C, A”) — e(C, A") by k — [xk], and
prove exactness of

Hom(C, A) 2% Hom(C, A") 25 e(C, A")
s e(CLA) 25 e(CL AT,
(ii) Prove commutativity of

Hom(C, A”) —2— ¢(C, A")
\ l‘”
Ext!(C, A",

where 9 is the connecting homomorphism.

7.25 (i) Prove that e(LJ, A): xkMod — Ab is a contravariant func-
tor if, for k: C' — C, we define k*: e(C, A) — e(C’, A)
by [§] — [§k].

(ii) Prove that e([J, A) is naturally isomorphic to Ext},e (O, A).

#7.26 Consider the extension X =0 — €' —> C -2 ¢” = 0.
(i) Define D': Homg(C’, A) — e(C”, A) by h — [hX], and
prove exactness of

Hom(C. A) —— Hom(C', A) 2> e(C”. A)
P e(C A) S o(C A).

(ii) Prove commutativity of

Hom(C', A) —2—~ ¢(C”. A)

T P

Ext!(C”, A),

where 9 is the connecting homomorphism.
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7.3 Cotorsion Groups

Here is a circle of ideas involving two related questions. Which abelian
groups can be equipped with a topology that makes them compact topo-
logical groups? Which abelian groups A are realizable in the sense that
A= ExtIZ(X , Y) for some abelian groups X and Y ? The first question was an-
swered by Kaplansky; the second was answered, independently, by Harrison,
Nunke, and Fuchs.

We will use two results, consequences of the Kiinneth Formula (which
we will prove later). All results in the section may be generalized to modules
over Dedekind rings.

Proposition 10.86. Given a commutative hereditary ring R and R-modules
A, B, and C, there is an isomorphism

Exth(Torf (A, B), C) = Exth(A, Exth(B, €)).

Proposition 10.87. If R is a commutative hereditary ring and A, B, C are
R-modules, then

Exth (A ®g B, C) ® Homg(Tor{ (A, B), C))
= Ext (A, Homg (B, C)) ® Homg (A, Ext (B, C)).

Notation. In this section, we abbreviate Homy (A, B), Exté(A, B), and
A ®7 B to, respectively, Hom(A, B), Extl(A, B),and A ® B.

We begin with a fundamental notion.

Definition. If G is an abelian group, then its maximal divisible subgroup is
dG = (S € G : Sisdivisible).

We say that G is reduced if dG = {0}.

It is easy to see that G is reduced if and only if Hom(Q, G) = {0}. It
follows that if 0 - A — B — C — 0 is exact and both A and C are
reduced, then B is reduced.

Proposition 7.41. Let G be an abelian group.
(1) dG is a divisible subgroup of G.

(i1) The exact sequence 0 — dG — G = G/dG — 0 is split, and
G/dG is reduced.
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(ili) d: G +— dG defines a left exact additive functor Ab — Ab, and G —
G /dG defines a right exact additive functor Ab — Ab.

Proof.

(1) This result is a special case of Exercise 5.23 on page 255, but, neverthe-
less, we give a proof of it. We claim that if S, ..., S, are divisible sub-
groups, then S| +- - - 4+ S, is a divisible subgroup. If x € S;+-- -+ Sy,
thenx = s1 +--- + s, where s; € S;. If n > 0, then there are slf e S;
with s; = ns; hence, x = n(s; +---+s,,) and Sy + --- + S, is di-
visible. It follows that dG is divisible, for if x € dG and n > 0, then
x € 81+ -+ 8y, for some divisible subgroups S;, and so x = nx’ for
xXeS+-+S, CdG.

(i) The exact sequence splits, for divisible abelian groups are injective
(Corollary 3.35). If D € G/dG is a nonzero divisible subgroup, then
7~ 1(D) is a divisible subgroup of G properly containing dG, a contra-
diction.

(iii) If f: G — H is a homomorphism and S C G is divisible, then f(S)
is divisible, and so f(S) € dH. Hence, f(dG) € dH. The reader
may show that if we define df = f|dG, then d is, indeed, a functor as
stated. The proof that G + G/dG gives a right exact functor is also
routine. e

Recall Corollary 3.72: a subgroup S C G is pure if SNnG = nS for all
n > 0; thatis, if s € S and s = ng for some g € G and n > 0, then there

is s’ € S with s = ns’. We say that a sequence 0 > A —> B — C — 0
is pure exact if it is exact and i (A) is a pure subgroup of B. We note that if
C is torsion-free, then every exact sequence 0 - A — B — C — 0is pure
exact.

Definition. An abelian group A is algebraically compact if every pure exact
sequence 0 > A — B — C — 0 splits.

The motivation for this definition comes from Pontrjagin duality. The cat-
egory LCA having as objects all locally compact abelian topological groups
and as morphisms Hom.(G, H), all continuous homomorphisms G — H,
admits a duality G + G = Hom(G, S'), where S' = R/Z is the circle
group; that is, G = G. Now discrete abelian groups are locally compact, and
Gis compact if and only if G is discrete (see Hewitt—Ross, Abstract Harmonic
Analysis).

An abelian group C is cocyclic if there is a prime p such that C is isomor-
phic to a subgroup of the Priifer group Z(p°°); that is, either C is finite cyclic
of order p™ for some m or C = Z(p™).
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Theorem 7.42. The following statements are equivalent for a (discrete)
abelian group G.

(1) G is algebraically compact.

(i1) There is a compact topological group C and G is isomorphic to an
algebraic direct summand of C (that is, if one forgets the topology on
C, then C = G @ B for some not necessarily closed subgroup B).

(iii) G is a direct summand of a product of cocyclic groups.

(iv) G = D @ E, where D is divisible and E is a direct summand of a
product of finite cyclic groups.

Proof.  See Fuchs, Infinite Abelian Groups 1, Chapter VII. The key idea is a
theorem of Los (Fuchs, Infinite Abelian Groups 1, p. 127) that every abelian
group can be imbedded as a pure subgroup of a product of cocyclic groups e

There is another class of abelian groups, complete groups, that is closely
related to the class of algebraically compact groups.

Definition. The n-adic topology on an abelian group A is the family of all
cosets of subgroups n!A for all n > 0. If A, = (), n!A, then A is metric
if A, = {0}; in this case, A is a metric space in the n-adic topology.> We
say that A is complete if A is metric and complete as a metric space: every
Cauchy sequence in A converges to a limit in A (see Example 5.19, which
discusses the p-adic topology and shows that completeness corresponds to
being a certain inverse limit).

There are abelian groups G that are not metric. For example, since dG is
divisible, dG = n!(dG) for alln > 0, and so dG C G, C G. Itis easy to
see, for every abelian group G, that G/ G, is metric; in particular, G/ G, is
always reduced.

Theorem 7.43 (Kaplansky). If A is a reduced group A, then A is complete
if and only if it is algebraically compact. Hence, every reduced algebraically
compact group is metric.

Proof.  Fuchs, Infinite Abelian Groups 1, p. 163. e

There are reduced groups that are not metric.

5Ifa,b € A, define |la — b = ¢" ifa — b € n!A,buta — b ¢ (n + 1)!A.
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Proposition 7.44. If T is the group with presentation
T = (a,b, :n>1|pa,a— p"b, :n>1),

where p is prime, then T is a reduced torsion group with T,, = (a + R) = 1.
Sketch of proof. We have T = F /R, where F is the free abelian group with
basis {a, b, :n > 1} and R = (pa,a — p"b, : n > 1). First,a + R # 0, lest
it lead to an impossible equation in the free abelian group F'. It is obvious that
a + R € T,, and it is not difficult to show that it generates 7,,. To see that T
is reduced, apply Hom(Q, ) to0 —- 7, - T — T /T, — O0; the flanking
terms are {0}, hence the middle Hom is {0}, and so 7T is reduced. e

Definition. An abelian group G is coforsion if Ext'(Q, G) = {0}.

Thus, G is cotorsion if every exact sequence 0 - G —- B — Q — 0
splits.

The premier example of a cotorsion group is Ext' (X, Y) viewed as an
abelian group. Before seeing this, let us first note some elementary properties
of cotorsion groups.

Proposition 7.45.

(1) Every algebraically compact group is cotorsion.

(i1) G is cotorsion if and only if every exact sequence 0 —- G — B —
X — 0 with X torsion-free splits.

(iii) A quotient of a cotorsion group is cotorsion.
(iv) A direct summand of a cotorsion group is cotorsion.
(v) A direct product of cotorsion groups is cotorsion.

(vi) A torsion cotorsion group G = B @ D, where D is divisible and B has
bounded order; that is, nB = {0} for some n > Q.

Proof.

(1) If G is algebraically compact, then every pure exact sequence 0 —
G — B — C — O splits. Since any short exact sequence with C =
Q is pure exact, 0 - G — B — Q — 0 always splits; that is,
Ext!(Q, G) = {0}.

(i1) If X is torsion-free, there is an exact sequence 0 - X - Q® X —
C — 0, which gives exactness of

Ext!(Q ® X, G) — Ext' (X, G) — Ext’(C, G).



442 Tor AND EXT CH.7

Now Ext%(C, G) = {0}, because D(Z) = 1. Also, Q @ X = B Q,
because Q ® X is a vector space over Q, so that

Ext!(Q ® X, G) = Ext! (EB Q, G) =[[Ext' @ 6) = (0).
Therefore, Ext! (X, G) = {0}.

(iii) If C — C’ — 0 is exact, then Ext'(Q, C) — Ext'(Q,C’) — 0is
exact, and Ext' (Q, C") = {0}. Thus, C’ is cotorsion.

(iv) If C is cotorsion and C = A @ B, then
{0} = Ext'(Q, €) = Ext'(Q, A) ® Ext'(Q, B),
and so both A and B are cotorsion.
(v) This follows from Ext!(Q, [T, C:) =[], Ext' (@, C)).

(vi) This statement follows from the result quoted in the remark on page 427:
a pure subgroup of bounded order is a direct summand. e

Here is the important result.

Theorem 7.46. An abelian group G is cotorsion if and only if
G = D@Ext'(X,Y),
where X, Y, D are abelian groups and D is divisible.
Proof. If G = D @ Ext' (X, Y). then
Ext' (Q, G) = Ext'(Q, D) ® Ext' (Q, Ext'(X, ¥)).

Since D is divisible, it is injective and Ext'(Q, D) = {0}. Proposition 10.86
gives
Ext! (Q, Ext! (X, Y)) = Ext! (Tor; (Q, X), Y).

Now Tor (Q, X) = {0}, because Q is flat, and so Ext' (Q, Ext' (X, Y)) = {0}.
Hence, G is cotorsion.

Conversely, let G be cotorsion. As any abelian group, G = dG® A, where
A is reduced. Since every direct summand of a cotorsion group is cotorsion,
it suffices to prove that A = Ext! (X, Y) for some X, Y. Apply Hom({J, A) to

the exact sequence
0->Z—-Q— K — 0,

where K = Q/Z, to obtain exactness of
Hom(Q, A) — Hom(Z, A) — Ext' (K, A) — Ext!(Q, A). (1)

The first term vanishes because A is reduced; the last term vanishes because
A is cotorsion. Therefore, A = Hom(Z, A) = Ext! (K, A). e
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Corollary 7.47.

(i) For every abelian group G, Ext' (K, G) and Hom(K, G) are reduced
and cotorsion.

(i) If a group A is reduced and cotorsion, then A = Ext! (K, A).
Proof.

(1) The proof of Theorem 7.46 shows that Ext' (K, G) is cotorsion. By
Proposition 10.87,

Ext'(Q ® K, G) ® Hom(Tor (Q, K), G))
= Ext!(Q, Hom(K, G)) ® Hom(Q, Ext!' (K, G)).

The left side vanishes because Q ® K = {0}, by Proposition 2.73, and
Tor; (Q, K) = {0}, because Q is flat, and so the right side vanishes
as well. Therefore, Hom(Q, Ext'(K, G)) = {0}; that is, Ext' (K, G)
is reduced; also, Ext]((@, Hom(K, G)) = {0}; that is, Hom(K, G) is
cotorsion. Finally, we prove that Hom(K, T') is reduced. The Adjoint
Isomorphism says

Hom(Q, Hom(K, 7)) = Hom(Q ® K, T),
and Hom(Q ® K, T) = {0} because Q ® K = {0}.
(i1) If A is reduced and cotorsion, then it was shown in Eq. (1) that A =
Ext!(K, A). o
Proposition 7.48.
(1) If T is a reduced torsion group, then there is an exact sequence
0— T—>Ext1(K,T)—> V — 0,
where V is torsion-free divisible.

(i1) There exist cotorsion groups that are not algebraically compact.
Proof.

(i) Apply Hom((J, T) to 0 - Z — Q@ — K — 0 to obtain exactness of
Hom(Q, 7) > Hom(Z, T) = Ext' (K, T) = Ext' (Q, T) = Ext'(Z, T).

The outside terms vanish because 7 is reduced and 7Z is projective. Now
Hom(Z, T) = T, and Ext!(Q, T) is a vector space over Q, hence is
torsion-free.
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Let T be the reduced torsion group in Proposition 7.44. The group
G = Ext' (K, T) is reduced and cotorsion, by Corollary 7.47, and T is
its torsion subgroup, by (i). Now

T,=(\nT <[ )nG = G..

n>1 n>1

so that T,, # {0} implies G, # {0}. But if A is a reduced algebraically
compact group, then A, = {0}, by Theorem 7.43, and so G is not
algebraically compact. e

We are going to see the etymology of cotorsion.

Proposition 7.49. The assignment n: T — Hom(K, T) is a bijection from
all isomorphism classes of divisible torsion groups to all isomorphism classes
of torsion-free reduced cotorsion groups.

Proof. Let T be a torsion abelian group. Now Hom(K, T') is reduced and
cotorsion, by Corollary 7.47. Exactness of Q — K — 0 gives exactness of
0 - Hom(K, T) — Hom(Q, T). But Hom(Q, T) is torsion-free, since it is
a vector space over (Q, and so its subgroup Hom(K, T') is also torsion-free.

@

(ii)

n is an injection. The exact sequence
0 - Hom(K, T) - Hom(Q, T) — Hom(Z, T) — Ext' (K, T)

simplifies to 0 - Hom(K,T) — Hom(Q,T) — T — 0 [note that
Ext'(K,T) = {0} because T is divisible, hence injective]. Tensoring
by K gives exactness of

Tor; (K, Hom(Q, T)) — Tor; (K, T)
— K @ Hom(K, T) - K ® Hom(Q, T).
Now Hom(Q, T') is torsion-free divisible, for it is a vector space over
Q. Hence, the first term vanishes because Hom(Q, 7T') is flat, while the

last term vanishes because K is torsion and Hom(Q, T') is divisible. But
Tor1 (K, T) = T, by Lemma 7.11. Therefore, T = K ® Hom(K, T).

Suppose that T and T’ are divisible torsion. If n(T) = n(T’), then
Hom(K, T) = Hom(K, T'), and

T=K@Hom(K,T)= K QHom(K,T) =T

n is a surjection. For any group G, the group K ® G is divisible torsion:
it is torsion because K is torsion, and it is divisible because exactness
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of Q > K — 0 gives exactness of Q @ G — K ® G — 0. There is
an exact sequence

Tor|(K,G) > ZQG —->Q®G - K® G — 0.
If G is torsion-free, then the Tor term vanishes, and this simplifies to
0-G—->0Q®G—>K®G—0.
Applying Hom(K, [J) gives exactness of
Hom(K,Q ® G) - Hom(K, K ® G) — Ext'(K, G) — Ext'(Q, G).

Assume further that G is reduced cotorsion. The first term vanishes be-
cause K is torsion and Q ® G is torsion-free, and the last term vanishes
because G is cotorsion. Therefore, Hom(K, K ® G) = Ext!(K, G).
Since G is reduced cotorsion, G = Ext! (K, G), by Corollary 7.47. e

Corollary 7.50. A group G is torsion-free reduced cotorsion if and only if it
is a direct summand of a product of copies of p-adic integers Z, for various
primes p. Hence, G is algebraically compact.

Proof. If G is torsion-free reduced cotorsion, then there exists a torsion di-
visible T with G = Hom(K, T). Now T = @ie] D;, where each D; is a
Priifer group Z(p°) for some prime p (Kaplansky, Infinite Abelian Groups,
p. 10). The exact sequence

0—>@D,~—>HDL-—>X—>O

splits, because T = @ D; is injective, and so G = Hom(K, T) is a direct
summand of Hom(K, [[; D;) = [[, Hom(K, D;). But K = EBP Z(p=°),
and Hom(Z(p®°), Z(p)) = Zp, the p-adic integers (Fuchs, Infinite Abelian
Groups 1, p. 181).

Now Z, = Hom(K, Z(p*)), where Z,, is the group of p-adic integers,
and so Z, is torsion-free reduced cotorsion, by Proposition 7.49. Hence,
Proposition 7.45 says that a direct product of copies of Z, (for various primes)
is torsion-free reduced cotorsion, as is any direct summand.

The last statement follows from Theorem 7.42. e

Definition. A cotorsion group G is adjusted if it is reduced and has no
torsion-free direct summands.

We shall see that adjusted groups arise from reduced torsion groups.



446 Tor AND EXT CH.7

Proposition 7.51. If G is a reduced cotorsion group, then there exists a
unique adjusted subgroup A such that G = A @ B and B is torsion-free.

Proof. LettG C H C G be such that H/tG = d(G/tG); thus, G/tG =
(H/tG) ® (G/tG)/(H/tG) with G/H = (G/tG)/(H/tG) reduced. Now
G/tG is a torsion-free group, and H/tG is a pure subgroup [for H/tG =
d(G/tG) is even a direct summand]; therefore, G/H = (G/tG)/(H/tG) is
torsion-free. We claim that H is a direct summand of G. Consider the ex-
act sequence Hom(Q, G/H) — Ext!(Q, H) — Ext!(Q, G): the first term
vanishes because G/H is reduced, and the last term vanishes because G is
cotorsion. Therefore, Ext'(Q, H) = {0}, and H is cotorsion. By Proposi-
tion 7.45(ii), Ext! (X, H) = {0} for every torsion-free group X; in particular,
Ext'(G/H, H) = {0}; thatis, G = H & (G/H).

We claim that H is adjusted. If H = S @ S’ and S is torsion-free, then
SNtG = {0}, and so H/tG = S & (S'/tG).% Since H/tG is divisible, S
is divisible. We have shown that every torsion-free direct summand of H is
divisible. But H is reduced, for it is a subgroup of the reduced group G, and
so it has no torsion-free direct summands; that is, H is adjusted.

Finally, we prove uniqueness of H. Suppose that H C G is an adjusted
direct summand with G/H’ torsion-free. We claim that H C H’. Otherwise,

G _H+H _ H _ H/G

H ™ H ~HNH  (HNH)/iG

But G/H’ is reduced (being isomorphic to a summand of G) and the last
group is divisible, being a quotient of H/tG = d(G/tG). Hence, H C H'.
Now G = H & B with B torsion-free, so that H' = H® (H'NB). But H'NB
is torsion-free, contradicting H” having no torsion-free summands (because it
is adjusted). Therefore, H = H'. e

Corollary 7.52. A reduced cotorsion group G is adjusted if and only if G =
Ext! (K, tG).

Proof. Since G is reduced cotorsion, it has a unique adjusted direct sum-
mand H with G/H divisible; the proof of Proposition 7.51 identifies H as
the subgroup with tG € H and d(G/tG) = H/tG. If G is adjusted, then
H = G thatis, G/tG = d(G/tG) is divisible.

Consider the exact sequence

Hom(K, G/tG) — Ext!(K,1G) — Ext'(K, G) — Ext'(K, G/1G).

It h € tG C H, then nh = 0 for somen > 0. Now h = s + s/, where s € S and
s' €8, and 0 = nh = ns + ns’. Hence, ns € SN S’ = {0}, so that ns = 0. But S is
torsion-free, and sos = O0and h = s’ € §’; thatis, tG C §'.
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The first term vanishes because K is torsion and G/tG is torsion-free, and
the last term vanishes because G/tG is divisible (hence, injective). There-
fore, Extl(K ,1G) = Ext! (K, G). But, as any reduced cotorsion group,
G = Ext! (K, G), by Corollary 7.47(ii).

Conversely, if G = Extl(K ,tG), then G is reduced and cotorsion, by
Corollary 7.47. If G = X @ Y, where Y is torsion-free, then tG N'Y = {0}.
Hence, G/tG = X/tG @ Y; that is, Y is a direct summand of G/¢G. Since
G/tG is divisible, Y is divisble. But Y is reduced, being a subgroup of the
reduced group G, and so Y = {0}. Therefore, G is adjusted. e

Proposition 7.53. The assignment {: A +— tA is a bijection from all iso-
morphism classes of adjusted cotorsion groups to all reduced torsion groups.

Proof. Let A and A’ be adjusted. If £(A) = ¢(A’), then tA = tA’ and
Ext!(K,tA) = Ext!(K,tA’). Hence, A = Ext!(K, tA) = Ext!(K, tA") =
A’, by Corollary 7.52; that is, ¢ is an injection.

Let 7 be a reduced torsion group. We claim that A = Ext' (K, T) is an
adjusted cotorsion group with tA = T. Of course, A is cotorsion. Consider
the exact sequence

Hom(Q, T) — Hom(Z, T) — Ext' (K, T) — Ext'(Q, T) — Ext'(Z, T).

The first term vanishes because T is reduced, and the last term vanishes be-
cause Z is projective. The sequence simplifies to

0—> T — Ext"(K,T) — Ext'(Q, T) — 0.

Since Ext! (Q, T) is a vector space over Q, it is torsion-free (divisible), and so
T = tExt' (K, T) = tA. Finally, A is adjusted, by Corollary 7.52. e

Theorem 7.54. There is a bijection from all isomorphism classes of torsion
abelian groups to all isomorphism classes of reduced cotorsion groups; it is
given by
T — Hom(K, T) ® Ext!(K, T).
Proof. If T is torsion, then T = dT & T’, where T’ is reduced torsion, and
Hom(K, T) ® Ext!(K, T) = Hom(K, dT) ® Ext (K, T").

Now Hom(K, dT) is torsion-free reduced cotorsion, by Proposition 7.49,
while T’ +— Ext' (K, T"), being the inverse of the bijection ¢ of Proposi-
tion 7.53, is an adjusted cotorsion group. e

It follows from Theorem 7.54 that any classification of torsion groups
gives a classification of reduced cotorsion groups. For example, all countable
reduced torsion groups 7 are classified by Ulm’s Theorem (Kaplansky, Infi-
nite Abelian Groups, p. 27), and so all reduced cotorsion groups Ext! (K, T)
are classified for such 7.



448 Tor AND EXT CH.7

7.4 Universal Coefficients

In Chapter 6, we defined the homology groups H,(X) of a topological space
X with coefficients in an abelian group A as

Hy (X, A) = Hy(Se(X) ®z A).

Of course, H, (X, Z) = H,(X), the homology group defined in Chapter 1.
Similarly, we defined cohomology groups with coefficients as

H" (X, A) = H_,(Homz(S+(X), A)).

Your first guess is H, (X, A) = H,(X) ®z A, but this is usually not the case.
The next theorem allows us to compute H,(X, A) from H,(X); the corre-
sponding result for cohomology will be given afterwards.

We will use Exercise 2.17 on page 67 in the next proof: if

AL p B E

is exact, then there is a short exact sequence

O—>cokerfi>Ci>kerk—>O,

where o: b +1im f +— gband B: c — hc.

Theorem 7.55 (Universal Coefficient Theorem for Homology, I).  Let R
be a ring, let A be a left R-module, and let (K, d) be a complex of flat right
R-modules whose subcomplex B of boundaries also has all terms flat.

For all n > 0, there is an exact sequence

0— Hy(K) ®g A 23 H,(K®g A) %% Torf (H,_1(K), A) — 0,
where Ay, : cls(z) ® a — cls(z ® a), and both A,, and 1, are natural.

Proof. By Corollary 7.4, each term in the fundamental exact sequence

!

i d
0— Z, - K, — B,_1 — 0 (1)

is flat, where i, is the inclusion and d,, is obtained from the differential d,
by changing its target from K,_; to imd, = B,_1. Since B,_; is flat,
Torf(Bn,l, A) = {0}, and we have exactness of

in d,®1
0> Z, R A" K @r AZS B, @r A — 0.

The maps i, ® 1, d), ® 1 can be assembled to give an exact sequence of com-
plexes

0>Z0rA 2L Kerd @ Bl—1]@r A —0
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(recall that B[—1] is the complex obtained from B by reindexing: B[—1], =
B,,_1 for all n). The corresponding long exact sequence is

n n ]*
Hop1B[—11®r A) 25 H (Z @ 4) "2

— H,B[~1]®g A) ~> H,_((Z®g A).

H,(K®r A)

Since Z and B[—1] have zero differentials, we have H,|(B[—1] ®r A) =
B, ®r Aand H,(Z ®r A) = Z, ®r A, by Example 6.1(iii). Thus, we may
rewrite the long exact sequence as

On+1

B, ®rA— Z,r A — H,(K®r A)
g Bn—l ®r A —n) Zn—l Qr A.

By Exercise 2.17, there are short exact sequences

coker 8,1 2 Hy(K @g A) 25 ker oy, @)

where o, z® a +imd,41 — cls(iyz Q@ a).
We compute the connecting homomorphism 9,41 using its definition.

41 ®1
Kn—H Qr A — B, ®r A

idnﬁ»]@l
i, ®1

Z,®r A——K,, Qr A.
If b € By, then b = d), 1k for some k € K, 11, and so
r1:bQark®ar>b®a— (1D ' bRa).

Now (i, ® D' (b ® a) = b ® a, where b is regarded as an element of Z,;
thus, if j,: B, — Z, is the inclusion, then 9,11 = j, ® l and 9,, = j,—1 ® 1.
Hence, exact sequence (2) is

n /Sn
coker(jy ® 1) o Hy(K ®g A) = ker(ju_1 ® 1), 3)

where o, : cls(z ® a) +im(j, ® 1) — cls(i,z ® a). The reader may prove
that both o, and B,, are natural.
Consider the flanking terms in (3). Since B, and Z, are flat, the exact

sequence 0 — B, N Z, — H,(K) — 0 is a flat resolution of H,(K).

Thus, 0 — B, i) Z, — 0 1is a deleted flat resolution of H, (K); after

tensoring by A, its homology is given by

= ker(ju—1 ® 1) = Torf (H,—1(K), A)
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and
Hy = coker(j, ® 1) = Tork (H,(K), A).

Recall Theorem 7.5: Tor can be computed using flat resolutions instead of
projective resolutions. Thus, exact sequence (3) is

0 — Tor& (H,(K), A) — H,(K ®g A) — Torf(H,_1(K), A) — 0.

But Tor(l)e (H,(K),A) = H,(K) ®r A; making this isomorphism explicit,
we see that the imbedding A, : H,(K) ® r A — H,(K ®pg A) is given by
cds(z) ®at>cls(z®a). e

Corollary 7.56 (Universal Coefficient Theorem for Homology, II).  Let
R be a right hereditary ring, let A be a left R-module, and let (K, d) be a
complex of projective right R-modules.

(1) Foralln > 0, there is an exact sequence

0— Hy(K) ®p A 23 H,(K®g A) 2% Tork (H,_1(K), A) — 0,
where Ay, : cls(z) ® a — cls(z ® a), and both )\, and ., are natural.

(i1) For all n > 0, the exact sequence splits7:

H,(K®r A) = H,(K) ®r A ® Torf (H,_1(K), A).

Proof.

(1) Since R is right hereditary, every submodule of a projective right R-
module is also projective, by Corollary 4.14. Therefore, B, € K, is
projective, hence flat, and so the hypothesis of Theorem 7.55 is satisfied.

(i) The sequence 0 — Z, ® A @; K, ®A — B,—1 ® A — 0is split
exact, because exact sequence (1) splits. More precisely, im(i,, ® 1) is
a direct summand of K, ® A. There are inclusions

im(dp+1 ® 1) S im(i, ® 1) € ker(d, ® 1) € K, @ A.

By Corollary 2.24(i), im(i,, ® 1) is a direct summand of ker(d, ® 1) and,
by Corollary 2.24(ii), im(i, ® 1)/ im(d,+1 ® 1) is a direct summand of
ker(dy ® 1)/im(dns1 ® 1) = Hy(K @g A). Now dyry = injud) -
Using the general fact that im fg = f(im g), we see that

im(dy1 ® 1) = (i ® D im(jud, | @ 1)

"The splitting need not be natural.
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and
im(jnd,/H_] @D =0Un® 1)im(d,/,+1 ® D).

Butim(d,,, ® 1) = B, ®g A, because d, | is surjective and ] ®@g A
is right exact; therefore,

(n®Dim(d,, ; ® 1) = (ju ® 1)(B, Qg A) =im(j, ® 1).
Therefore,
im(i, ® 1)/im(dy+1 ® 1) = im@i, ® 1)/, ® 1) im(j, ® 1).

Butim(i, ® 1) = Z, ®g A, so that im(i, ® 1)/(i, ® 1)im(j, ® 1) =
Z, ®r A/im(j, ® 1) = coker(jy ® 1) = H,(K) @r A.

Corollary 7.57. If X is a topological space and A is an abelian group, then,
foralln > 0,

Hy(X, A) = H,(X) @7 A @ Tor?(H,_1(X), A).

Proof. Now H,(X) = H,(Se.(X)) and H, (X, A) = H,(Se(X) ®z A). The
Universal Coefficient Theorem applies at once, for Z is hereditary and every
term of S, (X) is free abelian. o

Corollary 7.58. [f either H,—1(X) or A is a torsion-free abelian group, then
Hy(X, A) = Hy(X) ®z A.

Proof.  Either hypothesis forces TorIZ(Hn_l (X),A) ={0}. e

Here is the dual result.

Theorem 7.59 (Universal Coefficient Theorem for Cohomology). Ler R
be a ring, let A be a left R-module, and let (K, d) be a complex of projective
left R-modules whose subcomplex B of boundaries has all terms projective.

(1) Then, for all n > 0, there is an exact sequence
0— Ext}e(Hn_l, A) ﬁi H"(Hompg (K, A)) lad Homg(H,, A)) — 0
[where H,, abbreviates H, (K)] with both A, and ., natural.

(ii) If R is left hereditary, then, for all n > 0, the exact sequence splits®:

H"(Homg (K, A)) = Homg (H,(K), A) & Exth(H,_1(K), A).

8The splitting need not be natural.
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Proof.  Adapt the proof of Theorem 7.55, using the (contravariant) functor
Hompg (O, A) instead of J ® g A. The stronger hypothesis that boundaries be
projective (instead of flat) is needed because Ext requires projective resolu-
tions. e

The next result shows that the homology groups of a space determine its
cohomology groups.

Corollary 7.60. If X is a topological space and A is an abelian group, then
foralln > 0,

H"(X, A) = Homg (H,(X), A) @ Exty(H,~1(X), A).
Proof. By definition,
H"(X) = H_,(Homz(S+(X), Z)),

while
H" (X, A) = H_,(Homz(S.(X), A)).

The Universal Coefficient Theorem for Cohomology applies at once, for Z is
hereditary and every term of S, (X) is free abelian. e

Corollary 7.61. Let K be a complex of free abelian groups. If H,_1(K)
is free or A is divisible (for example, if A is the additive group of a field of
characteristic 0), then

H"(Homz (K, A)) = Homz (H,(K), A).
Proof.  Either hypothesis forces ExtIZ(Hn_l, A)={0}. e

Of course, variations on this theme are played by other hypotheses guar-
anteeing the vanishing of Ext!.

Corollary 7.62. If K is a complex of vector spaces over a field k, and if V
is a vector space over k, then for all n > 0,

H" (Homy (K, V)) = Homy (H,(K), V).
In particular, H" (Homy (K, k)) = H,(K)*, where * denotes the dual space.
Proof.  As every k-module, V is injective, and so Ext}( (Hy,—1,V)=1{0}. o

It is known, for any sequence of abelian groups Co, C1, Ca, .. ., that there
exists a topological space X with homology groups H,(X) = C,, for all n. In
contrast, if the cohomology group H" (X, Z) is countable, then it is a direct
sum of a finite group and a free abelian group [Nunke—Rotman, “Singular
cohomology groups,” J. London Math Soc, 37 (1962), 301-306].



Homology and Rings

We are now going to show that homology is a valuable tool in studying rings.

8.1 Dimensions of Rings

We can use Ext and Tor to define various dimensions of a ring, essentially
measuring how far it is from being semisimple. We shall see, for example,
that semisimple rings have dimension 0, while hereditary rings have dimen-
sion 1. The basic idea has already arisen, in the proof of Proposition 7.33:
if the torsion subgroup ¢G of an abelian group G is of bounded order, then
tG is a direct summand of G. The proof used Exercise 6.18, which says that
Ext%(A, B) = {0} for all abelian groups A and B. Here is that proof general-
ized from abelian groups to modules over Dedekind rings.

. dy d .
Recall that if - P, — P, — -+ —> P BN Py — 01is a deleted
projective resolution of a left R-module A, then

kerd

Exth (A, B) = ,
r( ) imd;_,

where d;f is the induced map Homg(P,—;, B) — Homg(Py, B).

Proposition 8.1.  If R is left hereditary, then Exty (A, B) = {0} foralln > 2
and for all left R-modules A, B.

Proof. There is an exact sequence 0 — P — Pp - A — 0 with P
projective. Since R is left hereditary, Corollary 4.14 says that P is projective,

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 453
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and so this short exact sequence can be viewed as a projective resolution of A
in which P, = {0} for all » > 2. Hence, the differentials 4} = O foralln > 2,
and Extp(A, B) = {0} foralln > 2. e

Proposition 8.2. If R is a Dedekind ring and A is a torsion-free R-module,
then Ext}e (A, B) is a divisible R-module for every R-module B.

Proof. By Lemma 4.33(ii) (which holds for every domain R), there is an

exact sequence 0 — A > V — X — 0, where V is a vector space over
QO = Frac(R). This gives rise to the exact sequence

Exth(V, B) - Exth(A, B) — Ext3(X, B).

The last term is {0}, by Proposition 8.1, so that i * is surjective. But Ext}e (V, B)
is also a vector space over O, by Exercise 6.19 on page 376, and so it is a di-
visible R-module. Therefore, its image, Ext}e (A, B), is divisible. e

We have seen, in Proposition 7.34, that the torsion subgroup of an abelian
group need not be a direct summand.

Theorem 8.3. Let R be a Dedekind ring, and let B be an R-module with
torsion submodule T = tB. If there is a nonzeror € R withrT = {0}, then
T is a direct summand of B.

Proof. 'We must show that 0 - T — B — B/T — 0 splits. Since
B/ T is torsion-free, it suffices to prove that Ext}e (A, T) = {0} whenever A
is torsion-free. Now Ext}e (A, T) is divisible, by Proposition 8.2; on the other
hand, rT = {0} implies r Ext}e (A, T) = {0}, by Proposition 6.38. It follows
that Ext}e (A, T) = {0}, for if E is a divisible module, then r £ = E for all
r # 0. Therefore, the short exact sequence splits.

We can measure how far away a module is from being projective.
Definition. If A is a left R-module (for some ring R), then pdz(A) < n
(pd abbreviates projective dimension) if there is a finite projective resolution

0O—-P,— =P —P—A—0O.
We will usually omit the subscript R. If no such finite resolution exists, then

pd(A) = oo; otherwise, pd(A) = n if n is the length of a shortest projective
resolution of A.
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Example 8.4.
(1) pd(A) = 0if and only if A is projective.

(i1) If R is semisimple, then Proposition 4.5 gives pd(A) = 0 for every left
R-module A.

(iii) If R is left hereditary, then pd(A) < 1 for every left R-module A, for
Theorem 4.19 says that every submodule of a projective R-module is
projective. <«

Recall that the nth syzygy K, of a module R is defined by K¢ = ker ¢ and
dy d
K, = kerd, forn > 1, where P = —- P, — P, — -+ —> P BN
Py 5 A—>0isa projective resolution of A. Obviously, the syzygies of A
depend on the choice of projective resolution of A.

Definition. Two modules A and B are projectively equivalent if there exist
projective modules P and P’ with A® P = B & P’.
It is clear that this is an equivalence relation.

Proposition 8.5. Ler (K,,),>0 and (K,),>0 be syzygies of a left R-module
A defined by two projective resolutions of A.

(i) Foreachn >0, K, and K}, are projectively equivalent.
(ii) For every left R-module B, we have Ext}e(Kn, B) = Ext}e (K], B).

(iii) For every left R-module B and every n > 1, we have Ext’}eJrl (A,B) =
Extk (K, _1, B).

Proof.

(i) This follows at once from Exercise 3.15 on page 128, the generalized
Schanuel Lemma.

(i) If P is projective, Exth(K, ® P, B) = ExtkL(K,, B) ® ExtL(P, B) =
Exth(K,, B). Thus, if K, ® P = K, @ P/, then Exth(K,, B) =
ExtL (K}, B).

(iii) Corollary 6.55. e

As a result of Proposition 8.5, one often abuses language and speaks of
the nth syzygy of a module, even though such a module is only defined to
projective equivalence.
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Proposition 8.6. The following are equivalent for a left R-module A.

() pd(A) < n.

(i1) Ext];e (A, B) = {0} for all left R-modules B and all k > n + 1.

(ii1) Extr;{H(A, B) = {0} for all left R-modules B.

(iv) There exists a projective resolution of A whose (n — 1)st syzygy is pro-

jective.

(v) Every projective resolution of A has its (n — 1)st syzygy projective.

Proof.

(i) = (ii) There is a projective resolution 0 — P, — --- — Py —

A — 0 with P, = {0} for all k > n + 1. Therefore, the induced maps
d;: Homg(Py—1, B) — Homg (P, B) are O for all k > n + 1, and so
Extk (A, B) = {0} forall k > n + 1.

(i1) = (iii) Trivial.

(ili) = (iv) Let K,,—1 be the (n — 1)st syzygy of a projective resolution of A.

By hypothesis, Exts"' (A, B) = {0} for all B. Now Ext}'!(A, B) =
Extk(K,—1, B), by Proposition 8.5(iii), and so Ext,(K,_1, B) = {0}
for all B. Hence, K,,_ is projective, by Corollary 7.25.

(iv) = (v) Assume that K,,_1 and K ,/1_1 are (n — 1)st syzygies arising from

two projective resolutions of A. By Proposition 8.5(i), there are projec-
tive modules P and P’ with K, 1 @ P = K, | & P'. Butif K,
is projective, then K , is a direct summand of the projective module
K,—1 @ P and, hence, is projective.

V)y=wlf--- - P - Pp - A — 0is a projective resolution of A,

then
0O—Ky_1—>P_1—>-—>P—>Ph—>A—=>0

is an exact sequence, where K, is the (n — 1)st syzygy. Butif K,,_4
is projective, then this sequence is a projective resolution of A, and this
says that pd(A) <n. e

We now introduce a notation that will soon be simplified.

Definition. If R is a ring, then its left projective global dimension is

¢pD(R) = sup{pd(A) : A € obj(xMod)}.
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Corollary 8.7. ¢pD(R) < n if and only ifExt',’eH(A, B) = {0} for all left
R-modules A and B.

Proof. Immediate from Proposition 8.6(iii). e

Example 8.8.
(1) If R is semisimple, then £pD(R) = 0.
(i1) If R is left hereditary, then £pD(R) < 1. <«

All of this discussion can be repeated using injective modules instead
of projectives; we merely state the definitions and results. The fundamental
reason this can be done is Theorem 6.67: Ext does not depend on the variable
being resolved.

Definition. If B is a left R-module (for some ring R), then idgr(B) < n
(id abbreviates injective dimension) if there is a finite injective resolution

0>B—>E'">E'»... 5 E">0.

We will usually omit the subscript R. If no such finite resolution exists, then
id(B) = oo; otherwise, id(B) = n if n is the length of a shortest injective
resolution of B.
Example 8.9.

(1) id(B) = 0 if and only if B is injective.

(i1) If R is semisimple, then Proposition 4.5 gives id(B) = 0 for every left
R-module B.

(iii) If R is left hereditary, then id(B) < 1 for every left R-module B, for
Theorem 4.19 says that every submodule of an injective R-module is
injective. <«

Recall that the nth cosyzygy V" of amodule B is defined by V¥ = coker n

0 1
and V" = cokerd” ! forn > 1, where E= 0 — B 2, RO L) E! i>
E? — ... is an injective resolution of B. Obviously, the cosyzygies of B

depend on the choice of injective resolution of B.

Definition. Two modules V and W are injectively equivalent if there exist
injective modules E and E’' with V @ E =W & E'.

It is obvious that this is an equivalence relation.
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Proposition 8.10. Let (V"),>0 and (V'"),>¢ be cosyzygies of a left R-
module B defined by two injective resolutions of B.

(i) Foreachn >0, V" and V'" are injectively equivalent.
(i) For every left R-module A, we have Ext}e (A, VhH = Ext}Q (A, V'™

(iii) For every left R-module A and every n > 1, we have Ext';i,'H (A, B) =
Exth (A, Vi1,

As a result of Proposition 8.10, one often abuses language and speaks of

the nth cosyzygy of a module, even though such a module is only defined to
injective equivalence.

Proposition 8.11. The following are equivalent for a left R-module B.
(1) id(B) <n.
(i1) Extlf? (A, B) = {0} for all left R-modules A and all k > n + 1.
(ii1) Extr;{H(A, B) = {0} for all left R-modules A.

(iv) There exists an injective resolution of B whose (n — 1)st cosyzygy is
injective.

(v) Every injective resolution of B has its (n — 1)st cosyzygy injective.

Definition. If R is a ring, then its left injective global dimension is

¢iD(R) = sup{id(B) : B € obj(zMod)}.

Corollary 8.12. (¢iD(R) < n if and only lext’I’eH(A, B) = {0} for all left
R-modules A and B.

Example 8.13.
(1) If R is semisimple, then /iD(R) = 0.

(i1) If R is left hereditary and B is a left R-module, then Example 8.9(iii)
shows that /iD(R) < 1. <«

We now combine Corollaries 8.7 and 8.12.
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Theorem 8.14. For any ring R, we have {pD(R) = ¢iD(R).

Proof. Both dimensions are characterized by Ext’l’ele (A, B) = {0} for all left
R-modules A and B. e

In light of Theorem 8.14, we now simplify earlier notation.

Definition. If R is a ring, then its left global dimension ¢D(R) is the com-
mon value of £pD(R) and ¢iD(R).

We now see why, in Chapter 4, we first discussed semisimple rings and
then hereditary rings; semisimple rings have global dimension O while hered-
itary rings, having global dimension 1, are only one step removed from semi-
simple rings. Hilbert’s Syzygy Theorem, which we will soon prove, states
that if & is a field, then k[xy, ..., x,,] has global dimension 7.

All of the results just proved for left modules hold, mutatis mutandis, for
right modules. The right global dimension rD(R) is the common value of
rpD(R) and riD(R). Of course, if R is a commutative ring, then we speak of
the global dimension D(R), dropping £ and r.

Recall that a ring R is left semisimple if it is a direct sum of minimal left
ideals. The Wedderburn—Artin Theorem says that a ring R is left semisimple
if and only if it is isomorphic to a direct product of matrix algebras over di-
vision rings; it follows that these rings are also right semisimple. Therefore,
{D(R) =0 =rD(R).

The first example of a ring for which the left and right global dimensions
differ was given by Kaplansky [“On the dimension of rings and modules X,”
Nagoya Math. J. 13 (1958), 85-88] who exhibited a ring R with /D(R) = 1
and rD(R) = 2. Jategaonkar [“A counterexample in ring theory and homolog-
ical algebra,” J. Algebra 12 (1966), 97-105] proved thatif 1 <m <n < oo,
then there exists a ring R with {D(R) = m and rD(R) = n. The same phe-
nomenon, but with # finite, can be found in Fossum—Griffith-Reiten, Trivial
Extensions of Abelian Categories, pp. 74-75.

On the positive side, we shall prove that /{D(R) = rD(R) when R is
left and right noetherian. Jensen [“Homological dimensions of rings with
countably generated ideals,” Math Scand. 18 (1966), 97-105] proved that
if all one-sided ideals (i.e., all left ideals and all right ideals) of a ring R
are countably generated, then [{D(R) — rD(R)| < 1. This, in turn, was
generalized by Osofsky [“Upper bounds of homological dimension,” Nagoya
Math. J. 32 (1968), 315-322] who showed that if every one-sided ideal of R
can be generated by at most 8, elements, then [({D(R) — rD(R)| < n + 1;
thus, Set Theory makes its presence known in these results. Indeed, if R
is the direct product of countably many fields, then Osofsky (Homological
Dimension of Modules, p. 60) proved that D(R) < 2, and that D(R) = 2 if
and only if the Continuum Hypothesis holds. Another example involving Set
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Theory is the ring E of all entire functions (a function f: C — C is entire if
it is holomorphic at every z € C). Now E is a Bézout ring, and every Bézout
ring R of cardinality ®,, has global dimension D(R) < m + 2 (Osborne,
Basic Homological Algebra, p. 357). In particular, assuming the Continuum
Hypothesis, D(E) < 3.

Lemma 8.15. A left R-module is injective if and only ifExt}e(R/I, B) = {0}
for all left ideals 1.

Proof. If B is injective, then Ext}e(A, B) = {0} for every left R-module
A. Conversely, apply Homg(J, B) to0 — I — R — R/I — 0 to obtain
exactness of Homg (R, B) — Homg (I, B) — Ext}e(R/I, B) = 0. The result
now follows from Theorem 3.30, Baer’s Criterion, for every map / — B can
be extended to R. e

It is natural to ask whether there is an analog of Lemma 8.15 to test for
projectivity. The obvious candidates do not work (but see Exercise 8.11 on
page 467). If we assume that Ext}e (A, R/I) = {0} for all I, then Exercise 8.1
on page 466 shows, when R is Dedekind, that we may conclude only that
A 1is torsion-free. If we assume that A satisfies Ext}e(A, I) = {0} for all
ideals I, then this, too, is not enough to force A to be projective. Indeed,
when R = Z and I # {0}, then we are assuming Extlz(A, Z) = {0} (for
nonzero ideals here are principal and, hence, are isomorphic to Z), and we are
posing Whitehead’s problem: if A is an abelian group with EXtIZ(A, Z) = {0},
is A free abelian? (See Exercise 7.18 on page 436.) It is not difficult to
prove that every countable subgroup of A is free. However, Shelah [“Infinite
abelian groups, Whitehead problem, and some constructions,” Israel Math.
J. 18 (1974), 243-256] proved that Whitehead’s problem is undecidable: the
statement “Extlz(A, Z) = {0} and |A| = 8| implies A is free” and its negation
are each consistent with the ZFC axioms of Set Theory.

We now develop some ways to compute global dimension. The next result
shows that left global dimension is determined by finitely generated modules;
indeed, it is determined by cyclic modules.

Theorem 8.16 (Auslander). For any ring R,
{D(R) = sup{pd(R/I) : I is a left ideal}.

Proof. (Matlis) If sup;{pd(R/I)} = oo, we are done, and so we may assume
that pd(R/I) < n for all left ideals /; thus, Ext’,’;r] (R/1, B) = {0} for every
left R-module B. Now Theorem 8.14 says {D(R) = ¢iD(R), so that it suf-
fices to prove id(B) < n for every B. Take an injective resolution of B with
(n — 1)st cosyzygy V1. By Proposition 8.10(iii), {0} = Ext’;;rl(R/I, B) =
Ext}e(R/I, V=1 for all left ideals /. But Lemma 8.15 gives V"~! injective
and, therefore, id(B) <n. e
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We now introduce another notion of dimension arising from flat resolu-
tions and Tor, for von Neumann regular rings will then appear naturally.

Definition. If A is a right R-module, then fdg(A) < n (fd abbreviates flat
dimension) if there is a finite flat resolution

O—-F,— --—>F — F— A— 0.

We will usually omit the subscript R. If no such finite resolution exists, then
fd(A) = oo; otherwise, define fd(A) = n if n is the length of a shortest flat
resolution of A.

A right R-module A is flat if and only if fd(A) = 0.

n d .
Definition. If — F, L Fo_i— - —> F N Fy 5 A > 0isa
flat resolution of A, define its nth syzygy' by Yy = kere and Y, = kerd,, for
n>1.

Of course, the nth syzygy of A depends on the flat resolution. Unfortu-
nately, Schanuel’s Lemma does not hold for flat resolutions (for the Compari-
son Theorem may not apply). For example, two flat resolutions of the abelian

group Q/Z are
0>Z—->Q—>Q/Z—->0 and 0> S— F— Q/Z— 0,

where F is a free abelian group (of infinite rank) mapping onto Q/Z (recall
Corollary 3.51: an abelian group is flat if and only if it is torsion-free). Now
Z @ F is free abelian, but it is not isomorphic to Q& S, for Q is not projective.
Still, we should be able to link flat dimension to Tor, for Theorem 7.5 says that
Tor can be computed using flat resolutions.

Proposition 8.17. The following four statements are equivalent for a right
R-module A.

(i) fd(A) <n.
(i) Tor,f (A, B) = {0} for all left R-modules B and all k > n + 1.
(ii1) Torf;_l (A, B) = {0} for all left R-modules B.

(iv) Every flat resolution of A has its (n — 1)st syzygy flat.

'We denote syzygies by Y, because the Greek word syzygy means yoke.
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Proof.

(i) = (ii) By Theorem 7.5, we may compute Tor,ie (A, B) using any flat
resolution of Aj; in particular, we may use the given flat resolution whose
kth term F; = {0} for all kK > n + 1. Therefore, Tor,’f (A, B) = {0} for
all k > n + 1, because all the differentials d; ®p 1p are 0.

(i1) = (iii) Trivial.
(iii) = (iv) Assume that Torfle (A, B) = {0} for all left R-modules B. If
Y,_1 is the (n— st syzygy of A, then TorX, | (A, B) = Torf (Y,_1, B),

by Corollary 6.23. Hence, Torf(Yn_l, B) = {0} for all B, so that Y,
flat, by Theorem 7.2.

(iv) = (i) Analogous to the proof of Proposition 8.6. e

Remark. The proof of (iii) = (iv) just given could have been used in the
proof of Proposition 8.6, thus avoiding projective equivalence there. <«

Definition. The right weak dimension of a ring R is defined by

rwD(R) = sup{fd(A) : A € obj(ModRg)}.

Proposition 8.18. rwD(R) < n if and only ifToer(A, B) = {0} for all
right R-modules A and all left R-modules B.

Proof. Immediate from Proposition 8.17. e

Definition. The left weak dimension of a ring R is defined by
{wD(R) = sup{fd(B) : B € obj(zMod)}.

Theorem 8.19. For any ring R, we have {wD(R) = rwD(R).

Proof.  'We can prove the left versions of Propositions 8.17 and 8.18, obtain-
ing the same formula for fwD(R) and rwD(R). e

Definition. The weak dimension wD(R) of a ring R is the common value
of £wD(R) and rwD(R).

In the beginning, it is a nuisance that A @ g B and Tor,’f (A, B) are hybrids
in that each requires A to be a right R-module and B to be a left R-module.
However, we now see that weak dimension requires no left/right distinction
as does global dimension; that is, wD(R) = wD(R°P). This fact will soon be
exploited.
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Example 8.20.

(1) If R is a ring, then wD(R) = 0 if and only if every R-module is flat.
In light of Theorem 4.9, we have wD(R) = 0 if and only if R is von
Neumann regular.

(i) If R is a ring, then wD(R) < 1 if and only if every submodule of a
flat R-module is flat. In Corollary 4.36, we saw that a domain R has
wD(R) < 1if and only if R is a Priifer ring. No “intrinsic” description
of all rings of weak dimension 1 is known.

(iii) Let R be a ring with wD(R) < 1. Theorem 4.32 shows that R is left
semihereditary if and only if it is left coherent. Similarly, R is right
semihereditary if and only if it is right coherent. <«

The next result explains why wD is called “weak dimension.”

Proposition 8.21. Let R be a ring.
(i) For every right R-module A, we have fd(A) < pd(A).
(i) wD(R) < min{¢ D(R), r D(R)}.

Proof.

(i) The inequality obviously holds if pd(A) = oo, and so we may assume
that pd(A) < n; that is, there is a projective resolution

0O—-P,— ---— Ph—> A— 0.

Since projective modules are flat, this is a flat resolution of A showing
that fd(A) < n. A similar argument works for left R-modules.

(i1) This follows at once from part (i). e.

The inequality in Proposition 8.21 can be strict, for there are von Neu-
mann regular rings that are not semisimple. In Corollary 8.28, we shall see
that the inequality in Proposition 8.21 is an equality when R is both left and
right noetherian.

Corollary 8.22. IfEXt';{H (A, B) = {0} for all left R-modules A and B (or

for all right R-modules A and B), then Torr]fH(C, D) = {0} for all right
R-modules C and left R-modules D.

Proof. The Ext condition says that £ D(R) < n, while the Tor condition says
that wD(R) < n. Thus, this is just a restatement of Proposition 8.21. e

We now understand why Torée (A, B) = {0} for hereditary rings R.
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Proposition 8.23. If S is a multiplicative subset of a commutative ring R,
then

wD(S™'R) < wD(R).
Proof. We may assume that wD(R) = n < oo. By Proposition 8.18, it
suffices to show that Torsjrl]R (A, B) = {0} for all S~'R-modules A and B.

Now there are R-modules M, N with A = S7!Mand B= S7IN as S7IR-
modules, by Corollary 4.79(ii), and so Proposition 7.17 gives

TorS, R(A, B) = TorS, R(S~'M, S7'N)
=5 Tor® (M, N)

=1{0}.

Lemma 8.24. A left R-module B is flat if and only ifTorf(R/I, B) = {0}
for every right ideal 1.

Proof. Proposition 3.58 says that a left R-module B is flat if and only if the

sequence 0 — I ®r B LY R ®p B is exact for every right ideal /, where

i: I — Ristheinclusion. If B is flat, 1 ® i is an injection, and exactness of
0 = TorR(R, B) — TorR(R/I, B) — I ®r B "> R @z B

shows that Torf(R /1, B) = {0}. The converse is obvious. e

Weak dimension, as global dimension, is determined by finitely generated
modules; indeed, it is even determined by cyclic modules.

Theorem 8.25. For any ring R, we have
wD(R) = sup{fd(R/I) : I is aright ideal}
= sup{fd(R/J) : J is a left ideal}.

Proof. The proof is the same as that of Theorem 8.16, using Lemma 8.24
instead of Lemma 8.15. e

We can now complete the proof of Theorem 4.32.

Corollary 8.26. Every left ideal of a ring R is flat if and only if every sub-
module of a flat left R-module is flat.

Proof.  Sufficiency is clear, for every left ideal is a submodule of R.

Conversely, if every left ideal 7 is flat, thenO0 - I — R — R/I — 0
is a flat resolution of R/I, which shows that fd(R/I) < 1. By Theorem 8.25,
we have wD(R) < 1; hence, if S is a submodule of a flat module B, then
fd(B/S) < 1. There is a flat resolution — B AN B/S — 0, where v is the
natural map. By Proposition 8.17, the Oth syzygy Y is flat. But Yy = kerv =
S,and so Sis flat. e
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Let us return to dimensions. For noetherian rings, weak dimension is
nothing new.

Theorem 8.27. Let R be a right noetherian ring.
(i) Let A be a finitely generated * right R-module, then fd(A) = pd(A).
(i) wD(R) = r D(R).
(iii) If R is left noetherian, then wD(R) = £ D(R).
Proof.

(i) As we saw in the proof of Proposition 8.21, fd(A) < pd(A). For the
reverse inequality, we may assume that fd(R) = n < oo, and we must
show that pd(A) < n. A projective resolution — Py — Pr_] —

- — Py - A — 0 in which each Py is finitely generated, as in
Lemma 7.19, is also a flat resolution, so that Proposition 8.17(iv) says
that the (n — 1)st syzygy Y, is flat; that is,

0O—-Y, 1—>P_1—>-+—>Ph—>A—->0 (1)

is a flat resolution. Since R is right noetherian, Corollary 3.57 says that
Y, is projective. But all the P; are projective; hence, sequence (1) is
a projective resolution of A, and so pd(A) < n.

(i1) Statements (ii) and (iii) follows from part (i), for both weak and global
dimension are determined by dimensions of finitely generated modules.
[ ]

Osofsky (Homological Dimension of Modules, p. 57) generalized Theo-
rem 8.27 as follows. If every right ideal of a ring R can be generated by at
most R, elements (where we agree that X_| means finite), then r D(R) <
wD(R) +n + 1.

Corollary 8.28 (Auslander).  If R is both left and right noetherian, then
¢D(R) =r D(R).

Proof. 1Inthis case, {D(R) = wD(R) =rD(R). o

2We must assume that A is finitely generated; for example, Q is a flat Z-module, so that
fd(Q) = 0, but pd(Q) = 1.



466

HoMoOLOGY AND RINGS CH. 8

Exercises

*8.1 Let R be a Dedekind ring. Prove that an R-module A is torsion-free
if and only if Ext}e (A, R/I) = {0} for every nonzero ideal .

Hint. Use Theorem 8.3.
8.2 (i) If R is quasi-Frobenius, prove that {D(R) = 0 or co.

(ii) Prove that D(I,) = oo if n is not squarefree.

(iii) Let G be a finite group and let k be a field whose charac-
teristic divides |G|; prove that {D(kG) = oo.

*8.3 If M is aleft R-module with pd(M) = n < oo, prove that there is a
free R-module F with Exty (M, F) # {0}.

*8.4 (i) If I is aleftideal in a ring R, prove that either R/I is pro-

jectiveor pd(R/I) = 1+4pd(I) (we agree that 1 +00 = 00).

@) If0 - M — M — M" — 0 is exact and if two of
the modules have finite projective (or injective) dimension,
prove that the third module has finite projective (or injec-
tive) dimension as well.

*85 Let0 - M — M — M” — 0 be an exact sequence of left
R-modules for some ring R. Prove each of the following using the
long exact Ext sequence.

(i) Ifpd(M’) < pd(M), prove that pd(M") = pd(M).

(i) If pd(M’) > pd(M), prove that pd(M") = pd(M") + 1.

(iii) If pd(M") = pd(M), prove that pd(M") < pd(M’) + 1.

*8.6 Let 0 > M’ — M — M” — 0 be an exact sequence of left
R-modules for some ring R.

(i) Prove that if pd(M’) = n < oo and pd(M") < n, then
pd(M) = n.

(ii)) Prove that pd(M) < max{pd(M’), pd(M")}. Moreover, if
pd(M’") = 1 + pd(M") and the short exact sequence is not
split, then the inequality is an equality.

*87 Let0 — M’ — M — M’ — 0 be an exact sequence of left
R-modules for some ring R.

(i) Prove that pd(M"”) < 1 4+ max{pd(M), pd(M")}.

Hint. Use the long exact Ext sequence.

(i) If0 > M — M — M"” — 0is exact and M projective,
prove that either all three modules are projective or that
pd(M") =1+ pd(M').

Hint. Use the long exact Ext sequence.

*88 Let0 - M’ — M — M” — 0 be an exact sequence of right
R-modules for some ring R. Prove that if fd(M') = n < oo and
fd(M") < n, then fd(M) = n.
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*8.9 Given a family of left R-modules (A )rek, prove that

pd(€D Ax) = suppd(a)

keK

Conclude that if /D(R) = oo, then there exists a module A with
pd(A) = oo. [A priori, there might exist a ring R with pd(A) < oo
for every left R-module A, yet £D(R) = oo because there is a se-
quence of left R-modules A, with sup, {pd(A,)} = oo.]

8.10 Let R be a Dedekind ring with fraction field Q. Prove that an R-
module B is injective if and only if Ext}q(Q/R, B) = {0}.

*8.11 If R is a Dedekind ring, prove that an R-module P is projective if
and only if Ext}?(P , F') = {0} for every free R-module F'.

8.12 If R is a left coherent ring, prove that wD(R) < 1 if and only if R
is left hereditary. Conclude that if R is left and right coherent, then
wD(R) < 1if and only if R is left and right hereditary.

8.13 Prove that every left ideal of a ring R is flat if and only if every right
ideal is flat.

8.2 Hilbert’s Syzygy Theorem

If R is a (not necessarily commutative) ring, let R[x] denote the polyno-
mial ring in which the indeterminate x commutes with all the coefficients
in R. Since R[x1,...,Xp4+1] = (R[xl, ...,xn])[xn+1], the polynomial ring
R[x1, ..., x,] consists of polynomials in which the indeterminates commute
with each other as well as with the coefficients in R. Hilbert’s Syzygy The-
orem states that £ D(R[x]) = 1 + £ D(R) (actually, Hilbert proved only the
special case when R = Clxy, ..., x,]).
If M is a left R-module, write

M[x] = R[x] ®r M.

Since R[x] is the free R-module with basis {1, x, xz, ...}, and since tensor
product commutes with direct sums, we may view the underlying R-module
of M[x] as a direct sum: M[x] = @, .y M;, where M; = M. Thus, elements
of M[x] are “vectors” (x! ®m;), where i > 0, m; € M, and almost all m; = 0.
One may also regard these elements as “polynomials” with coefficients in M.

If an abelian group M is an R-module, we may use the subscript R, writ-
ing pdg (M) to denote its projective dimension. Now M|[x] is an R-module
as well as an R[x]-module, and so both pdg(M[x]) and pdg,(M[x]) are
defined.
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Lemma 8.29. For every left R-module M, we have
pdr (M) = pdg(,(M[x]).

Proof. Tt suffices to prove, for any n > 0, that if one dimension is finite and
< n, then the other is also finite and < n.
If pdp (M) < n, then there is a projective resolution

O—-P,—--+-—> Ph—> M — 0.

Since R[x] is a flat right R-module (R[x] is a free R-module), there is an
exact sequence of left R[x]-modules

00— Rx]®r Py — -+ — R[x]®r Py = R[x] Qg M — 0.

But R[x] ®r P; is R[x]-projective for all i, and so de[x](M[x]) <n.
If pd R[X](M [x]) < n, then there is an R[x]-projective resolution

0—> Q0,—--— Qyp— M[x]— 0. (1)

View this sequence as an R-exact sequence. Now each (; is a direct summand
of a free R[x]-module F;; thatis, F; = Q; @ S; for some R[x]-module S;. But
F; is also a free R-module, and so Q; is projective as an R-module. Thus, the
exact sequence (1) is also an R-projective resolution of M[x] = P, .y M;, a
direct sum of countably many copies of M. But pdz(M[x]) = pdz(M), by
Exercise 8.9 on the previous page. e

Corollary 8.30. If¢D(R) = oo, then £ D(R[x]) = oo.

Proof. If £D(R) = oo, there exists an R-module M with pd(M) = oo, by
Exercise 8.9. But pdg,(M[x]) = oo, by Lemma 8.29, and so £ D(R[x]) =
0. e

Lemma 8.31. If M is a left R[x]-module, then there is an R[x]-exact se-
quence

0— M[x] > M[x] —> M — 0,
where e: M[x] — M by Xt @m; — x'm;.

Proof. Clearly, e is a surjective R[x]-map, and there is an R[x]-exact se-
quence 0 — kere — M[x] - M — 0. Itsuffices to prove that M[x] = kere
as left R[x]-modules. Define f: M[x] — kere by

f: in@)m,- = in(l®x—x®l)m,-.
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It is routine to see that f is an R[x]-map with im f C kere. To see that f is
an isomorphism, we write its formula in more detail:

k k
in Qm; — 1 Qxmg + in ® (xm; —m;_1) — xk+l & my.
i=0 i=1

If Y x' ® m; €ker f, then
O=—my =xmp —myp_1=---=xmp —my,

so that §ach m; = 0; hence, f is injective. If Zik:o x' ® v; € kere, then
Zik: oX'v; =0in M, and we can solve the equations

—Vg = Xmg, V1 =Xmjp —mg, ..., Vg = —Mj_]

recursively to show that f is surjective. e

Corollary 8.32. For every ring R, we have
LD(R[x]) <1+ £D(R).

Proof. Let us agree that co = oo + 1, so that Corollary 8.30 lets us assume
that fD(R) = n < oo. Take a left R[x]-module M, and view it as a left
R-module. By Lemma 8.29, we have pdg(M[x]) = pdg(M) < n. Apply
Exercise 8.7 on page 466 to the R[x]-exact sequence 0 — M[x] — M[x] —
M — 0in Lemma 8.31; we obtain pdg(,j(M) < 1+ pdg[,(M[x]) < 1 +n.

We are now going to prove the reverse inequality: if £ D(R) = n, then
{D(R[x]) > 1+£D(R). Note that we have already proven this in the infinite-
dimensional case in Corollary 8.30.

Given a left R-module M, we had to create a left R[x]-module M[x].
The reverse direction is easier, for a left R[x]-module N can be viewed as a
left R-module by forgetting the action of x. The proper context in which to
view the upcoming discussion is that of change of rings (we will elaborate on
this circle of ideas when discussing spectral sequences). If ¢: R — R*isa
ring homomorphism, then every left R*-module M™* acquires a left R-module
structure via the formula

rm* = o(r)m*, r e Randm* € M*.

For example, the inclusion ¢: k — k[x] that takes a € k to the constant
polynomial a views each left k[x]-module as a left k-module by forgetting
the action of x. Every R*-map f*: M* — N™* can also be viewed as an
R-map:

rarm®) = fH(@r)m™) = (r) f*(m™) = rf*(m").
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Proposition 8.33. Every ring homomorphism ¢: R — R* defines an exact
additive functor U: gxMod — gpMod. Moreover, if ¢ is surjective, then
U,: Homg«(M*, N*) — Homg(UM*, UN™), given by f* +— Uf*, is an
isomorphism for all left R*-modules M™* and N*.

Proof. It is easy to see that U is an additive functor; U is exact because, for
any R*-map f*, both f* and U f* are equal as additive functions and, hence,
they have the same kernel and the same image. Equality of the underlying
functions of f* and U f* shows that U, is an injection, for every R*-map
is an R-map. If ¢ is surjective, then U, is a surjection, for every R-map
g: M* — N*isan R*-map: if r € R and r* = ¢(r), then

g(r*m*) = g(p(rym*) = grm®)  [for p(r)m* = rm*]
=rg(m*) = ¢(r)gm™) = r*g(m”).
Therefore, g € Hompg«(M*, N*)and g = Ug. e

Since the underlying additive functions of an R*-map f™* and its corre-
sponding R-map Uf* are the same, one usually identifies them and writes
Hompg+(M*, N*) = Homg(M*, N*).

Let ¢ D(R) = n. We will prove that { D(R[x]) > 1 +¢D(R) = 1 +n by
exhibiting a pair of left R[x]-modules V and W with Ext’};[rxl](V, W) # {0}.
The next result will help us do this.

Definition. Let R be a ring. An element x € Z(R) is regular on a left R-
module M if the multiplication M — M, given by m + xm, is an injection;
thatis, if m € M and xm = 0 imply m = 0.

If M = R, then x is regular on R if x is not a zero-divisor.

Theorem 8.34 (Rees). Let R be a ring, let x € Z(R) be a nonzero element
that is neither a unit nor a zero-divisor, and let R* = R/xR. If M is a left
R-module and x is regular on M, then there is an isomorphism

Exth. (L*, M/xM) = Ext},T ' (L*, M)
for every R*-module L* and every n > 0.

Proof. Since a left R*-module is merely a left R-module annihilated by x,
the quotient M /x M is also a left R*-module; thus, Ext’,.(L*, M /x M) makes
sense for every left R*-module L*. The natural map R — R™* gives a change
of rings functor U: g+Mod — rMod, so that UL* is a left R-module and
Ext’}ele (UL*, M) also makes sense. However, we shall write Ext’I’eH(L*, M)

as in the statement instead of the more accurate Ext'l‘;rl (UL*, M).
Recall Theorem 6.64, the axioms characterizing the contravariant Ext
functors. If (G": pxMod — Ab),>¢ is a sequence of additive contravari-

ant functors satisfying the following three axioms:



8.2 HILBERT’S SYzyGYy THEOREM 471

(i) every short exact sequence gives a long exact sequence having natural
connecting homomorphisms;

(i) there exists a left R*-module M* with G° = Hompg+(0J, M*);

(ili) G™(P*) = {0} for all free R*-modules P* and all n > 1 (we have used
the remark after Theorem 6.64 to write free instead of projective),

then
G" = Exth. (O, M*) for alln > 0.

Set M* = M /xM, and define G": g=Mod — Ab, for all n > 0, by
G" = Exty''(O, M).

It is clear that this sequence of functors satisfies axiom (i). Let us verify

axiom (ii). Exactness of the sequence of R-modules 0 — M oM =
M/xM — 0, where p: m — xm, gives exactness of

Hompg(L*, M) — Homg(L*, M/xM) — Exth(L*, M) 5 Bxth(L*, M).

We claim that Homg (L*, M) = {0}. If u € L*, then xu = 0, because
L* is a left R*-module. Hence, if f: L* — M is an R-map, then xf (1) =
fxu) = f(0) = 0. But f(u) € M, sothat w: M — M being an injection
gives f(u) = 0; hence, f = 0. Thus, 9 is injective.

We claim that @, = 0. On the one hand, w, is multiplication by x. On
the other hand, if v: L* — L* is multiplication by x, then v = 0 (because L*
is a left R*-module), and so the induced map v* = 0. But u, = v*, for both
are multiplication by x; hence, @, = 0. Thus, 9 is surjective.

We conclude that the connecting homomorphism 9 is a natural isomor-
phism Homgz(L*, M/xM) — Ext}e(L*, M). But the change of rings map
R — R* is surjective, and so Homg(L*, M/xM) = Hompg+(L*, M /xM),
by Proposition 8.33. Thus, G = Ext}Q(D, M) and Hompg+ (L1, M /xM) are
naturally isomorphic.

We now prove (the modified) axiom (iii): G"(F*) = Ext';;rl(F M) =
{0} for all free left R*-modules F* and all n > 1. Choose a basis of F*,
and let Q be the free left R-module with the same basis. In more detail,
F* =@ cx Rfur = Prex (R/xR)up, and Q = Py Rup. IfA: Q — O
is multiplication by x, then the hypothesis that x is a central nonzero divisor
in R shows that A is an injective R-map; moreover, cokerA = Q/xQ =
(@keK Ruk)/x(@keK Ruk)z Dickx (R/xR)uy = F*. Thus, there is an

2
R-exact sequence 0 - Q — Q — F* — 0. In the exact sequence

Exth(Q, M) — Exts ' (F*, M) — Ext3™(Q, M),
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the flanking Exts are {0} because Q is a free R-module. Hence, G" (F*) =
Ext’,’;r](F*, M/xM) = {0} for all n > 1 Therefore, (G"),>0 satisfies the
axioms, and G" = Exty.(d, M/xM). But G" = Ext’;;rl(D, M), and this
gives the desired isomorphism. e

Corollary 8.35. Let R be a ring, and let x € Z(R) be a nonzero element that
is neither a unit nor a zero-divisor. If R* = R/xR, and {D(R*) = n < o0,
then

¢D(R) > {D(R*) + 1.

Proof.  Assume that L* is a left R*-module with pdz«(L*) = n. By Exer-
cise 8.3 on page 466, there is a free left R*-module F* with Ext}. (L*, F*) #
{0}. Define Q as the free left R-module having the same basis as F* (as in
the proof of Theorem 8.34), so that Q/xQ = F*. By Theorem 8.34,

Exth. (L*, F*) = Ext,tI(L*, Q).

This says that pdp(L*) > n+ 1,andso {D(R) > n+1 =1+ £D(R*). e

Theorem 8.36. For any ring R,
{D(R[x]) =1+ £D(R).

Proof.  Corollary 8.32 gives £ D(R[x]) < 1 4+ £ D(R), while Corollary 8.30
gives the reverse inequality if £ D(R) = oco. Assume that £ D(R) = n < oo.
If R = R[x], then R* = R/xR = R[x]/xR[x] = R; hence, Corollary 8.35
applies to give {D(R[x]) > 1 +£D(R). e

Theorem 8.37 (Hilbert Theorem on Syzygies). If k is a (not necessar-
ily commutative) ring and klx1, ..., x,] is the polynomial ring in which the
indeterminates commute with each other and with the coefficients in k, then

¢D(k[x1, ..., x,]) = £D(k) + n.
In particular, if k is a field, then D(k[x1, ..., x,;]) = n.
Proof. Induction on n > 1 using Theorem 8.36. e

If : R — R* is aring map, then change of rings says that every left R*-
module M can be viewed as a left R-module; we now compare its projective
dimensions over the two rings.
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Proposition 8.38. Let R* = R/(x), let x € Z(R) not be a zero-divisor, and
let M be a left R-module with x regular on M.

(1) Ifpdr(M) =n < oo, then pdp«(M/xM) <n — 1.
(1) Ifpdr«(M/xM) =n < oo, then pdg(M) > n + 1.
Proof.

(1) Since pd(M) = n < oo, we have Ext’,’;rl(L, M) = {0} for all left R-
modules L; in particular, Ext’;;rl (L*, M) = {0} for all left R*-modules
L* (by change of rings, L* can be viewed as a left R-module). By
the Rees Theorem, Exth. (L*, M/xM) = Ext'l'fl(L*, M). Therefore,
Ext. (L*, M/xM) = {0} for all L*, and pdg«(M/xM) <n — 1.

(ii) If pdg«(M/xM) = n < oo, then there is a left R*-module L* with
Ext’. (L*, M/xM) # {0}. We have Exts"' (L*, M) # {0}, by the Rees
Theorem, and so pdp(M) >n+1. e

Here is another change of rings theorem, simpler than the theorem of
Rees, which also yields Corollary 8.35. Note that the hypothesis does not
involve regularity.

Proposition 8.39 (Kaplansky). Let R be a ring, let x € Z(R) not be a
unit or a zero-divisor, let R* = R/(x), and let M* be a left R*-module. If
pdp«(M*) =n < oo, then pd(M*) =n + 1.

Proof. We note that a left R*-module is merely a left R-module M with
xM = {0}.

The proof is by induction on n > 0. If n = 0, then M* is a projective left
R*-module. Since x is not a zero-divisor, there is an exact sequence of left
R-modules

0> R R— R*=0,

so that pdp (R*) < 1. Now M*, being a projective left R*-module, is a direct
summand of a free left R*-module F*. But pdp(F*) < 1, for it is a direct
sum of copies of R*, and so pdp(M™) < 1. Finally, if pdg(M*) = 0, then
M* would be a projective left R-module; but this contradicts Exercise 3.2 on
page 114, for xM = {0}. Therefore, pdp(M*) = 1.

If n > 1, then there is an exact sequence of left R*-modules

0> K*—>F"—> M"—=0 2)

with F* free. Now pdp«(K™) = n — 1, so induction gives pdz (K™*) = n.
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If n = 1, then pdgr(K*) = 1 and pdr(K*) < 2, by Exercise 8.5 on
page 466. There is an exact sequence of left R-modules

0—-L—>F—>M—-=0 3)

with F free. Since xM* = {0}, we have x F' C ker(FF — M*) = L, and this
gives an exact sequence of R*-modules (each term is annihilated by x)

0— L/xF - F/xF - M* — 0.

Thus, pdg«(L/xF) = pdg« (M*)—1 = 0, because F/x F is a free R*-module,
so the exact sequence of R*-modules

0—xF/xL— L/xL - L/xF — 0

splits. Since M* = F/L = xF/xL, we see that M* is a direct summand
of L/xL. Were L a projective left R-module, then L/xL and, hence, M*
would be projective left R*-modules, contradicting pdg«(M*) = 1. Exact
sequence (3) shows that pdp(M*) = 1 + pdp(L) > 2, and so pdp (M™) = 2.

Finally, assume that n > 2. Exact sequence (2) gives pdp«(K*) = n—1 >
1 > pdg(F*); hence, Exercise 8.5 on page 466 gives

pdp(M*) =pdgr(K*)+1=n+1. e

The following theorem compares global dimensions (in case A = R[x],
it only gives the inequality ¢ D(R) < £ D(R[x])). Note that the hypothesis of
the theorem makes sense, for if a ring R is a subring of a ring A, then A is an
(R, R)-bimodule.

Theorem 8.40 (McConnell-Roos). Let A be a ring that is a faithfully
fla® right R-module, where R is a subring of A with {D(R) = n < oo. If
either

(1) A is a projective left R-module or

(1) A is a flat left R-module and R is left noetherian,
then £ D(R) < £ D(A).
Remark. K. R. Goodearl, [“Global dimension of differential operator rings,”
Proc. AMS 45 (1974), 315-322] gives an example showing that one must

assume that £ D(R) is finite. He displays a commutative ring R with D(R) =
oo and a differential ring R[0] with r D(R[f]) = 1. <«

3Recall that a right R-module A is faithfully flat if it is flat and A ® p X = {0} implies
X = {0}.
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Proof. 'We claim, for every left R-module M, thatp: M — A®gM, defined
by m > 1 ® m, is an injection. Exactness of 0 — ker¢ — M A Qr M
gives exactness of 0 - A Qg ker¢p — A Qr M @ A Qr (AQRr M),
because A is flat. The reader may show that multiplication in the ring A gives
an R-map u: AQpr (AQr M) > AQr M witha ® a'® + aa’ ® m. Now
the composite (1 ® ¢) = lagm, and so 1 ® ¢ is an injection. Therefore,
{0} = ker(1 ® ¢) = A ® Ker ¢; since A is faithfully flat, ker ¢ = {0}, and so
@ 1s an injection.

@

(i)

Choose a left R-module M with pdz(M) = n. There is an exact se-
quence

0—>M—¢>A®RM—>C—>0,

where C = cokerg. Now pdp(C) < n (for {D(R) = n), so that
Exercise 8.6 on page 466 gives pdp(A ®r M) = n. We claim that
pds(A ®r M) > n [of course, A ®r M is a left A-module]; this will
suffice to prove £ D(A) > n = £ D(R).

Assume that A is R-projective. Every free left A-module F is a direct
sum of copies of A; as each A is R-projective, we see that F, too, is R-
projective. Now any A-projective Q is an A-direct summand of a free
A-module F and, hence, is also an R-direct summand of F'; thus, Q is
R-projective. If pd 4(A ® g M) = d < n, then there is an A-projective
resolution

0—-Qy— - —Q0y— ARrM — 0.

But we have just seen that A-projectives are R-projective, so that this
is also an R-projective resolution of A ® g M. Thus, pdp(A ®r M) <
d < n, a contradiction.

Since R is left noetherian, Theorem 8.27 says that £ D(R) = wD(R).
Choose a left R-module X with fdg(X) =n,andlet¢’: X - A®gr X
send x — 1 ® x. There is an exact sequence

05X A@rX = C' =0,

where C = coker¢’. Now fdg(C’) < n (for wD(R) = n), so that
Exercise 8.8 on page 466 gives fdg(A ®r X) = n. Now A Qg X is a
left A-module, and we claim that pd 4, (A ® g X) > n; this will suffice to
prove £ D(A) > n = £ D(R).

Every left A-module B is also a left R-module; we claim that if B is
a flat left A-module, then it is also a flat left R-module. Both 0 ® g B
and D ®r (A ®4 B) are functors gkMod — Ab, and they are naturally
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isomorphic. Since A is a flat left R-module, however, the latter functor
is exact, being the composite of exact functors. Hence, L1 ®g B is exact
and z B is R-flat.

If pdy (A ®r X) = d < n, then there is an A-projective resolution
00— B;—--—>By—> A®r X — 0,

which is also an A-flat resolution. Since A-flats are R-flat, this is also
an R-flat resolution of A ® g X. Thus, fdr(A ®r X) < d < n, a
contradiction. e

8.3 Stably Free Modules

If k is a field, then Theorem 4.100, the Quillen—Suslin Theorem, shows that
finitely generated projective k[xy, ..., x,]-modules are free. However, the
proof uses a theorem of Serre saying that projective k[xy, ..., x,]-modules
are stably free (a module P is stably free if there exist finitely generated free
modules F and F’ with F = P @ F). Of course, finitely generated free
modules are stably free. We prove Serre’s theorem in this section. The basic
idea of this proof is due to Borel, Serre, and Swan; our exposition provides
details of the sketch given by Kaplansky in Commutative Rings, pp. 134—135.

Definition. A module M has FFR (a finite free resolution) of length < n if
M is finitely generated and there is an exact sequence

O—>F,—F,_1—>--—>F—>M-—0

in which each F; is a finitely generated free module.

It is redundant to say that a module M having FFR is finitely generated
(it is even finitely presented, by Corollary 3.13); we have made this explicit in
the definition only for emphasis.

The next proposition shows why FFR is relevant here.

Proposition 8.41. A finitely generated projective left R-module P has FFR
if and only if P is stably free.

Proof. If P is stably free, then P is finitely generated and there is a finitely
generated free module F* with P & F free. Hence, P has FFR of length < 1,
forO0 - F — P& F — P — 0is exact. Conversely, assume that P has
FFR: there is a free resolution 0 — F,, - F,,_.1 — --- —> Fp > P — 0
with each F; finitely generated. We prove that P is stably free by induction on
the lengthn > 0. If n = 0, then there is an exact sequence 0 — Fp — P — 0
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with Fp finitely generated free. Exactness gives Fp = P, so that P is free and,
hence, stably free. For the inductive step, assume that there is a free resolution
0— Fyy1 —> F, — -+ F1 > Fy - P — 0 witheach F; finitely generated.
If K is the Oth syzygy, we may factor this resolution into two exact sequences:

0—- Fy41 > F1l>K—>0 and 0—- K — Fp — P — 0.

The first exact sequence shows that K has FFR of length < n. Since P is
projective, the short exact sequence splits, Fp = P @ K, and so K is finitely
generated projective. By induction, K is stably free; that is, there is a finitely
generated free module Q with K @ Q finitely generated free. Thus, P is stably
free, for PO (KD Q) =E(PHPK)DO=EFyD Q. o

Lemma 8.42. [f a module M has a projective resolution

d. d
O—)Pn—>-~-—>P2—2>P1—1>P0—€>M—>O

in which each P; is stably free, then M has FFR of length < n + 1.

Proof. We do an inductiononn > 0. If n = 0, then e: Pp — M is an
isomorphism. Since M = P is stably free, there are finitely generated free
modules Fyy and F| with Fp = M & Fp, and so there is an exact sequence
0— F > Fp > M — 0, as desired. Let n > 0. Since Py is stably free,
there is a finitely generated free module F with Py F finitely generated free.
There is an exact sequence

d) di®1 /
0P — - > P—5P®&F S pyoF S5 M0,

where dy: py = (d2, p2,0) and €': (po, f) = €(po). Now kere’ has a
stably free resolution with n — 1 terms, and so it has FFR of length n, by
induction. Splicing this FFR for ker&’ with the short exact sequence 0 —
kere’ — Py@® F — M — 0 (see Exercise 2.6 on page 65) shows that M has
FFR of length <n+1. e

Proposition 8.43. Let0 — M’ — M — M"” — 0 be an exact sequence of
left R-modules, where R is left noetherian. If two of the modules have FFR,
then so does the third.

Proof.  Since modules having FFR are finitely generated, two of the modules
in the short exact sequence are finitely generated; as R is left noetherian, the
third module is finitely generated as well. The noetherian hypothesis also
allows us to use Lemma 7.19: there are free resolutions of M" and M” each
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of whose terms is finitely generated.

| i

F| FY
| i
F; Fy
| |

0 M M M 0
| |
0 0

By the Horseshoe Lemma (Proposition 6.24), we may insert a free resolution
— Fi — Fp — M — 0 between them; note that all F; = F/ @ F/’ are
finitely generated free. For each n > 0, there is an exact sequence of syzygies:
0 — K, - K, — K, — 0. If any of these syzygies, say, K, is stably free,
then the truncated resolution 0 — K,, —» F, — - — Fy —> M — 01is
a finite resolution each of whose terms is stably free (finitely generated free
modules F; are stably free!). Lemma 8.42 applies to show that M has FFR.

By hypothesis, two of {M’, M, M"} have FFR of length < n. Assume
first that one of these two is M”. By Exercise 8.16 on page 484, K,/ is stably
free, as is one of the other syzygies. The exact sequence of syzygies now
splits (for stably free modules are projective). In this case, the third syzygy
is also stably free, by Example 4.92(iv), for its complement is stably free. As
above, M’ and M have FFR, by Lemma 8.42.

The remaining case assumes that M’ and M have FFR of length < n,
so that K, and K, are stably free, by Exercise 8.16. Now splice the short
exact sequence 0 — K, — K, — K, — 0 and the truncated resolution
0— K/ — F/ — .- — F/— M" — 0 to obtain a resolution of M" by
stably free modules:

0—>K,—>K,—>F —--—F —>M —0.
Lemma 8.42 applies to show that M” has FFR. e
Definition. A family ¥ is a subclass of obj(gMod) such that whenever an

exact sequence 0 — M’ — M — M” — 0 has two terms in §, the third
term also lies in §.

Proposition 8.43 says that if R is left noetherian, then the class of all FFR
left R-modules is a family.

Lemma 8.44. Every intersection of families of left R-modules is a family.



8.3 STABLY FREE MODULES 479

Proof. Let §* = (), S«» Where each §y is a family. If0 - M — M —
M"” — 0 is an exact sequence having two terms in §*, then these two terms
lie in every . Since each §, is a family, the third term must lie in every §y,
and so the third term lies in §*. o

Definition. In light of Lemma 8.44, we may define §(X), the family gen-
erated by a subclass X C obj(gMod), as the intersection of all the families
containing X.

If X C obj(gMod), define an X-child to be a module occurring in a short
exact sequence whose other two terms lie in X, and define

&(X) to be the class of all X'-children.

We claim that €(X') contains X. If X = &, there is nothing to prove. If

M € X, then exactness of 0 — M ﬂ) M — 0 — 0 shows that {0} € €(X),
while M and {0} being terms in this same short exact sequence shows that
M € E€(X); thatis, X € €(X). Define an ascending chain of subclasses:

Oy =x; el = @ ().

The union UZOZO ¢"(X) consists of all the descendants of X'.

Lemma 8.45. [f X is a subclass of obj(rkMod), then Ufiio (X)) =3X),
the family generated by X.

Proof. 1t is clear that every family § containing X’ must contain €(X) and
¢"(X) for all n; that is, |-, €"(X) C § for all §. Hence, | J;—, €"(X) C
ﬂg § =35).

For the reverse inclusion, it suffices to prove that | ;- , €"(X) is a family
containing X. Let 0 - M’ — M — M” — 0 be an exact sequence having
two terms in the union. There exists n > 0 with €"(X") containing these two
terms, and so the third term lies in ¢”!(X). Thus, the union is a family. e

Corollary 8.46. If R is left noetherian and X is a class of left R-modules
each of whose members has FFR, then every member of the family §(X) gen-
erated by X has FFR.

Proof. It M € §(X), there is a smallest number n > 0 with M € €"(X);
we prove that M has FFR by induction on n. If n = 0, then M € X, and so M
has FFR, by hypothesis. If n > 0, then there is a short exact sequence whose
other two terms lie in €71 (). By induction, these two terms have FFR, and
so M has FFR, by Proposition 8.43. e

The next theorem is the main result about families. We will state it now
so that the reader may see that Serre’s Theorem follows quickly from it.
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Theorem 8.47. Let R be a commutative noetherian ring. If every finitely
generated R-module has FFR, then every finitely generated R[x]-module has
FFR.

Theorem 8.48 (Serre). Ifk is a field, then every finitely generated projec-
tive k[x1, ..., x,]-module is stably free.

Proof. 'We begin by proving, by induction on n > 1, that every finitely gen-
erated k[x1, ..., x,]-module has FFR. If n = 1, then k[x] is a PID, and every
k[x]-module has FFR of length < 1. If n > 1, then k[xy, ..., x,] is noethe-
rian, by the Hilbert Basis Theorem. By induction, every finitely generated
R-module has FFR, where R = k[x1, ..., x,], and so Theorem 8.47 says
that every finitely generated R[x,+1]-module has FFR (of course, R[x,+1] =
k[x1,...,xp41]). In particular, finitely generated projective k[x1, ..., Xp+1]-
modules have FFR, and so they are stably free, by Proposition 8.41. e

We prepare a lemma for the proof of Theorem 8.47.

Definition. If M is an R-module, where R is commutative, then a subset
X C M is scalar closed if x € X implies that rx € X forall r € R.

Every submodule of a module M is scalar closed;
Zer(R) = {r € R : r =0 orr is a zero-divisor}
is an example of a scalar closed subset (of R) that is not a submodule.
Definition. Let X C M be a scalar closed subset. The annihilator of x € X

is
ann(x) ={r € R : rx =0},

the annihilator of X is

ann(X) ={re R:rx =0forall x € X},

and
A(X) = {ann(x) : x € X and x # 0}.

Note that ann(x) and ann(X) are ideals.

Lemma 8.49. Let R be a commutative noetherian ring, let M be a nonzero
finitely generated R-module, and let X C M be a nonempty scalar closed
subset.

(1) Anideal I maximal among A(X) is a prime ideal.
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(i1) There is a descending chain
M=My2Mi 2M; 2---2 M, ={0}
whose factor modules M; /M1 = R/p; for prime ideals p;.
Proof.

(i) Since R is noetherian, the nonempty set A(X) contains a maximal el-
ement, by Proposition 3.16; call it / = ann(x). Suppose that a, b are
elements in R with ab € I and b ¢ I; that is, abx = 0 but bx # O.
Thus, ann(bx) 2 I + Ra 2 . If a ¢ I, thenann(bx) 2 [ + Ra 2 I.
But bx € X because X is scalar closed, so that ann(bx) € A(X), which
contradicts the maximality of / = ann(x). Therefore, a € I and [ is a
prime ideal.

(i) Since R is left noetherian, it has the maximum condition on left ide-
als. Thus, the nonempty set .A(M) has a maximal element, say, p; =
ann(xp), which is prime, by part (i). Define M; = (x1), and note
that My = R/ann(x;) = R/p;. Now repeat this procedure. Let
P> = ann(xp + M) be a maximal element of A(M /M), so that p;
is prime, and define M, = (x», x1). Note that {0} C M| € M, and that
M>/M1 = R/ann(xy + M1) = R/p;. By Proposition 3.18, the mod-
ule M has ACC, and so this process terminates, say, with M* C M.
We must have M* = M, however, lest the process continue for another
step. Now reindex the subscripts to get the desired statement. e

Here is the proof of Theorem 8.47.

Proof. Let X be the class of all finitely generated extended R[x]-modules
M; that is, M = R[x] ®r B for some finitely generated R-module B. By
hypothesis, B has FFR: there is an R-exact sequence

O—-F,—>-—>F —>F—>B—>0

in which all F; are finitely generated free R-modules. Since R[x] is a flat R-
module, tensoring this sequence by R[x] yields an R[x]-exact sequence. But
each R[x]®pg F; is afree R[x]-module, and so M has FFR. By Corollary 8.46,
every module in F(X') has FFR. Thus, our task is to prove that every finitely
generated R[x]-module M lies in F = F(X).

We begin by normalizing M. Suppose that ann(M) N R # {0}. Let
m € M be nonzero, and let ann(m) be its annihilator; note that ann(m) N R D
ann(M) N R # {0}. If we write I = ann(m) N R, then R/I = (m)pg, the
R-submodule of M generated by m. Since R[x] is a flat R-module, there is
an exact sequence

0 — R[x]®r I — R[x] - R[x]®g (m)r — 0. 1
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Corollary 3.59 says that R[x] ®g I = R[x]I, so that R[x]] # {0}. Now
R[x]/R[x]I = R[x] ®g (m)g is a cyclic submodule of M, say, (m1). Thus,
(my) is extended, for (m|) = R[x] ®p (m)g, and so (m|) € X € F. Exact-
ness of (1) implies ann(m) = R[x]®gI = R[x]I, sothatann(m)NR # {0}.
This argument can be applied to M /(m): there is my + (m1) € M /(m) with
ann(my + (m1)) N R # {0} and with (m, my)/(m;) € X. It follows that
(my1,my) € F and ann((m, mo2) N R # {0}. This process must stop, by
Proposition 3.15, for M has ACC. We conclude that if ann(M) N R # {0},
then M € F.
By Lemma 8.49(ii), there is a descending chain

M=My2M 2M2---2 M, ={0}

whose factor modules M;/M; 1 = R[x]/p; for prime ideals p;. It thus suf-
fices, by induction on n, to show that M = R[x]/p € F. Our normalization
allows us to assume that ann(R[x]/p) "R = pN R = {0}. ButpN Risa
prime ideal in R, so that R and, hence, R[x] are domains. Choose a nonzero
f(x) € p € R[x], and consider the exact sequence 0 — (f) — p — p/(f).
Now (f) = R[x], since R[x] is a domain, while ann(p/(f)) # {0} [for it con-
tains f(x)]. Thus, both (f), p/(f) € F,sothatp € F. Finally, R[x]/p € F,
for both R[x],pe F. e

We will need the following proposition in the next section.

Lemma 8.50 (Prime Avoidance). Let p1, ..., pn be prime ideals in a
commutative ring R. If J is an ideal with J C py U --- U py,, then J is
contained in some ;.

Proof.  The proof is by induction on n > 1, and the base step is trivially true.
For the inductive step, let J € p; U - -+ U p,41, and define

Di=piU---Up;U---Uppyi.

We may assume that / C D; for all i, for otherwise the inductive hypothesis
can be invoked to complete the proof. Hence, for each i, there exists a; € J
with a; ¢ D;; since J € D; Up;, we must have a; € p;. Consider the element

b=ay+a - -aps1.

Now b € J because all the a; are. We claim that b ¢ pj. Otherwise,
ay---apy1 = b —a; € Ppr; but p; is a prime ideal, and so @; € p; for
some i > 2. This is a contradiction, for a; € p; € D; and a; ¢ D;. There-
fore, b ¢ p; for any i, contradicting J C pyU---Up,. e
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Proposition 8.51. If R is a commutative noetherian ring, then there are
finitely many prime ideals p1, . .., pp with

Zer(R) ={r € R:r =0orrisazero-divisor} C p; U---Up,.

Proof. In Lemma 8.49(i), which applies because Zer(R) is scalar closed,
we proved that any ideal 7 that is a maximal member of the family A(X) =
(ann(x))xezer(r) 1s prime (maximal members exist because R is noetherian).
Let (py)aca be the family of all such maximal members. If x is a zero-divisor,
then there is a nonzero r € R with rx = 0; that is, x € ann(r) [of course,
r € Zer(R)]. It follows that every zero-divisor x lies in some p,, and so
Zer(R) € (Jyea Po- It remains to prove that we may choose the index set A
to be finite.

Each p, = ann(xy) for some x, € X; let S be the submodule of M
generated by all the x,,. Since R is noetherian and M is finitely generated, the
submodule S is generated by finitely many of the x,; say, S = (x1, ..., xp).
We claim that ann(X) € p; U ... U p,, and it suffices to prove that p, <
p1U...Up, forall «. Now p, = ann(x,), and x, € S; hence,

Xog =T1X1+ -+ IpXp
forr; e R.Ifaep;N---Np, =ann(xy) N---Nann(x,), then ax; = 0 for
all i and so ax, = 0. Therefore,
p1N---Np, Cann(xy) = Po.

But p,, is prime, so that p; < p, for some i,* and this contradicts the maxi-
mality of p;. e

Exercises

*8.14 Consider the change of rings functors U: gRMod — g/Mod and
V: Modr — Modyg arising from a ring map ¢: R’ — R. Prove
that the function B @ g A — VB Qp UA, given by

D bi®ai (in BOrR) > Y bi ®a; (in VB Qp UA),

l 1

is a well-defined injective Z-map.

Hint. The relations defining V B @ U A include all ordered pairs
(be(r),a) — (b, (r)b), which are special cases of the relations
(br,a) — (b, rb) in B Qg A.

4 Assume that Iy N---N1I; € p, where p is prime. If /; Z p for all i, then there are
u; € I withu; ¢ p. Butuy---u, € 1y N---N I C p; since p is prime, some u; € p, a
contradiction.
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8.15 Let § be a family, and let M € §. If M’ = M, prove that M’ € §.
*8.16 Let R be left noetherian, and let M be a left R-module having FFR
of length < n. Prove that the nth syzygy of every free resolution of
M, each of whose terms is finitely generated, is stably free.
Hint. Use Exercise 3.15 on page 128, the generalized Schanuel
Lemma.

8.17 Let S be a multiplicative set in a commutative ring R. If an R-
module M has FFR, prove that the S~' R-module S~!M has FFR
and that x (S™'M) = x(M). [The Euler characteristic x (M) is
defined in Exercise 3.16 on page 129.]

8.4 Commutative Noetherian Local Rings

This section discusses the theorems of Auslander, Buchsbaum, and Serre
about regular local rings. We are now going to focus on commutative noe-
therian local rings, the main results being that such rings have finite global
dimension if and only if they are regular local rings (regular local rings arise
quite naturally in Algebraic Geometry in describing nonsingular points on va-
rieties), and that they are unique factorization domains. Let us begin with a
localization result.

5

Proposition 8.52. Let R be a commutative noetherian’ ring.

(1) If A is a finitely generated R-module, then
pd(A) = sup{pd(Am)},
m

where m ranges over all the maximal ideals of R.
(i)
D(R) = S&P{D(Rm)},
where m ranges over all the maximal ideals of R.
Proof.

(i) We first prove that pd(A) > pd(A.,) for every maximal ideal m. If
pd(A) = oo, there is nothing to prove, and so we may assume that
pd(A) = n < oo. Thus, there is an R-projective resolution

O—-P,—>P,_1—>--—>PHy—> A— 0.

SPart (ii) of this proposition may be false if R is not noetherian. For example, an infinite
Boolean ring R is not semisimple, and so D(R) > 0. On the other hand, R = Fp is a
field for every maximal ideal m, and so sup,,{D(Rm)} = 0.
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Since Ry, is a flat R-module, by Theorem 4.80,
0> Rn®r Py —> Ru®rPr1— - —> Ru®rPy— Ay —> 0

is an Rpy-projective resolution of A, and so pd(Ay) < n. (This im-
plication does not need the hypothesis that R is noetherian nor that A is
finitely generated.)

For the reverse inequality, it suffices to assume that supm{pd(Am)} =
n < oo. Since R is noetherian, Theorem 8.27(i) says that pd(A) =
fd(A). Now pd(Am) < n if and only if Torfrl (Am, Bm) = {0} for
all Ry-modules By, by Proposition 8.17. However, Proposition 7.17
gives an isomorphism Torf_‘i‘r’1 (Am, Bm) = (Torrlf +1(A’ B))m. There-
fore, Proposition 4.90(i) gives Tor,f (A, B) = {0}. We conclude that
n > pd(A).

(i1) This follows at once from part (i), for D(R) = sup,{pd(A)}, where
A ranges over all finitely generated (even cyclic) R-modules, by Theo-
rem 8.16. o

We now set up notation that will be used in the rest of this section.

Notation. We denote a commutative noetherian local ring by R, by (R, m),
or by (R, m, k), where m is its unique maximal ideal and k is its residue field
k= R/m.

Theorem 8.16 allows us to compute the global dimension of a ring R as
the supremum of the projective dimensions of its cyclic modules. When R is
a local ring, there is a dramatic improvement; global dimension is determined
by the projective dimension of one cyclic module: the residue field k, as we
shall see in Theorem 8.55.

Lemma 8.53. Let (R, m, k) be a local ring. If M is a finitely generated

R-module, then pd(M) < n if and only ifTorrIf_H (M, k) = {0}.

Proof.  Assume that pd(M) < n. By Proposition 8.21(i), we have fd(M) <
pd(M), so that Torée (M, B) = {0} for every R-module B. In particular,
Tork, (M, k) = {0}.

We prove the converse by induction on n > 0. For the base step n = 0,
we must prove that Torf(M, k) = {0} implies pd(M) = 0; that is, M is
projective. By Theorem 4.62, there is a projective cover: an exact sequence

0> N-5F-2% M0
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with F a finitely generated free R-module and N € mF. Since Tor{e (M, k) =
{0}, the sequence
j 1
0> N@rk 2 Fork “5 Megk—0
is exact. Tensor 0 - m — R — k — 0 by N; right exactness gives a natural
isomorphism
v: N ®rk — N/mN,

ifn €e Nandb € k,then ty: n ® b — n + mN. There is a commutative
diagram

0—>NQrk—2% Fork

ml %

N/mN —— F/mF,
1

where i: n + mN +— n + mF. Since i ® 1 is an injection, so is i. But
N C mF says that the map i is the zero map. Thus, N/mN = {0}, so that
N = mN. Hence, N = {0}, by Nakayama’s lemma (Corollary 4.51) (which
applies because finitely generated modules over a noetherian ring are finitely
presented). Therefore, ¢: F — M is an isomorphism, and so M is free.

For the inductive step, we must prove that if Tor,f Jr2(M , k) = {0}, then
pd(M) < n + 1. Take a projective resolution P of M, and let €2, be its
nth syzygy. Since P must also be a flat resolution of M, we have ¥, = 2,
(where Y, denotes the nth syzygy of P viewed as a flat resolution of M).
By Corollary 6.23, Torf (M, k) = Torf(Yn, k). The base step shows that
Y, = Q, is free, and this gives pd(M) < n + 1, by Lemma 8.6. e

Corollary 8.54. Let (R, m, k) be a local ring. If M is a finitely generated
R-module, then

pd(M) = sup{i : Tor{ (M, k) # {0}}.

Proof. Letn = sup{i : Tor®(M, k) # {0}}. Then pd(M) < n — 1; since
pd(M) £ n, we have pd(M) =n. e

Theorem 8.55. Let (R, m, k) be a local ring.
(i) D(R) < n if and only ifTor,IfH(k, k) = {0}.

(i) D(R) = pd(k).
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Proof.

(1) If D(R) < n, then Lemma 8.53 applies at once to give Tor,f +1(k’ k) =
{0}. Conversely, if TorffH(k, k) = {0}, Lemma 8.53 gives pd(k) <
n. Now Toer(M, k) = {0} for every R-module M, by Proposi-
tion 8.17. In particular, if M is finitely generated, then Lemma 8.53
gives pd(M) < n. Finally, D(R) = sup,,{pd(M)}, where M ranges
over all finitely generated (even cyclic) R-modules, by Proposition 8.52.
Hence, D(R) < n.

(i1) Immediate from part (i) and Corollary 8.54. e

Definition. A prime chain of length n in a commutative ring R is a strictly
decreasing chain of prime ideals

If R is a commutative ring, then its Krull dimension, dim(R), is the length n
of a longest prime chain in R.

Let k be a field and let R = k[xy, ..., x,] be the polynomial ring. If
pi—1 = (x1,...,x;), then p; is a prime ideal, for R/p;_1 = k[xi+1, ..., Xn]
is a domain, and

po2p1 2 2 P12 (0)

is a prime chain of length n. It turns out that this prime chain has maximal
length, so that dim(k[xq, ..., x,]) = n.

We cite some results of Commutative Algebra that do not use homology.
If (R, m, k) is alocal ring, then elements x1, ..., Xz in m comprise a minimal
set of generators (no proper subset of them generates m) if their cosets mod
m? form a basis of the k-vector space m/m? (Rotman, Advanced Modern Al-
gebra, Proposition 11.165). It follows that any two minimal sets of generators
of m have the same number of elements, namely,

V(R) = dimy(m/m?).
There is always an inequality dim(R) < V(R) (Advanced Modern Algebra,
Corollary 11.166).

Proposition 8.56. Let (R, m, k) be a noetherian local ring. If x € m — m?,

then (R*, m*, k) is a local ring, where R* = R/(x) and m* = m/(x), and
V(R) = V(R*) + 1.

Proof. Let {y},...,y/} be a minimal generating set of m*, and let y* =
vi +m. Itis clear that {x, y, ..., y;} generates m, and we now show that it
is a minimal generating set; that is, their cosets mod m form a basis of m/m?.
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If rx+ Zi riy; € mz, where r;, r € R, then we must show that each term
lies in m2; that is, all r;, r € m. Passing to R*, we have ) ; U S (m*)2
[where * denotes coset mod (x)] for r*x* = 0. But {y}, ..., y/'} is a basis of
m*/(m*)2, so that r* € m* and r; € m for all i. Therefore, rx € m>. But
X ¢ mz, and sor € m, as desired. e

Definition. A local ring (R, m, k) is regular of dimension n if it is noethe-
rian and
n =dim(R) = V(R).

It is clear that every field is a regular local ring of dimension 0, and it
is easy to see that every local PID is a regular local ring of dimension 1.
Regular local rings must be domains (Rotman, Advanced Modern Algebra,
Proposition 11.172); it follows that if p is a prime, R = I > is a noetherian
local ring that is not regular.

Example 8.57. Regular local rings arise in connection with nonsingular
points on varieties. In more detail, let £ be an algebraically closed field, and
let I € k[X] be a set of polynomials, where k[ X] abbreviates k[xy, ..., x;].
We regard each f(X) € k[ X] as a k-valued function, and we define the variety
of I to be

Var(I) = {a € k™ : f(a) =0forall f € I}.

Given a subset A C k™, define
Id(A) = {f(X) e k[X]: f(a) =0foralla € A}.
The coordinate ring of A is
k[A]l = {flA: f(X) € k[X]}.

Now Id(A) is always an ideal in k[X], and k[A] = k[X]/Id(A). A variety
V is irreducible if its coordinate ring k[V] is a domain; that is, if Id(V) is
a prime ideal (it is common usage to assume, as part of the definition, that
varieties are irreducible). Let k(V) = Frac(k[V]).

If V is a variety and a € V, then the local ring of V at a is the localization

Ouv =k[Vdaw),

where Id(a) = {f/g € k[V]: f(a) = 0and g(a) # 0}. Now O,y is a local
ring with maximal ideal m, vy the localization of Id(a), and O, vy /m, v = k.
We can define formal partial derivatives df/dx; for every f € k[V], which
allows us to define the tangent space T, v of V at a. There is an isomorphism
T;V = myy /mg’v of vector spaces over k, where Ta*,V is the dual space

of T,,v, and so dimy (ma’v/mz v) = dim(7T v). We say a is a nonsingular
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point if the tangent space at a has the expected number of linearly independent
tangents. There are several ways to express this algebraically, but all of them
say that a € V is nonsingular if and only if (O, v, m, v, k) is a regular local
ring. <

Serre and Auslander—Buchsbaum proved, independently, that R is regular
if and only if D(R) is finite, in which case D(R) = dim(R) = V(R). The
proof that if (R, m, k) is regular, then D(R) = dim(R) = V(R) is not too
difficult.

Definition. Let R be a commutative ring and let M be an R-module. A
sequence X, ..., X, in R is an M-regular sequence if x| is regular on M
(i.e., the multiplication map M — M, given by m +— xm, is an injection),
X7 is regular on M /(x1)M, x3 is regular on M /(x1, x2)M, -- -, x,, is regular
on M/(x1,...,x,—1)M. If M = R, then xy, ..., x, is also called an R-
sequence.

For example, if R = k[x1, ..., x,] is a polynomial ring over a field &,
then it is easy to see that xp, ..., x, is an R-sequence.

Proposition 8.58. A noetherian local ring (R, m, k) is regular if and only if
m is generated by an R-sequence x1, ..., xq. Moreover, in this case,

d = V(R).
Proof. Rotman, Advanced Modern Algebra, Proposition 11.173. e
Lemma 8.59. Let (R, m, k) be a local ring, let M be a finitely generated

R-module, and let x € m be regular on M. If pd(M) = n < oo, then
pd(M/xM) =n+ 1.

Proof. Since x is regular on M, there is an exact sequence
0—>ML>M—>M/xM—>O,

where the first map is multiplication by x. There is a long exact sequence
arising from applying [J ®r k; consider the fragment fori > n + 1:

0 = TorX (M, k) — TorR(M/xM, k) — Tor® (M, k) =0

[since i — 1 > n = pd(M), the outside terms vanish, by Lemma 8.53]. Thus,
Tor®(M/xM, k) = {0} forall i > n + 1, and so pd(M/xM) < n + 1 [we
are using Theorem 8.27(i): since R is noetherian and M is finitely generated,
fd(M) = pd(M)].
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Now consider the fragment of the long exact sequence fori =n + 1:

0 = Tork (M, k) — TorR | (M/xM, k) — TorR(M, k) = TorR(M, k).

Since x € m, multiplication by x annihilates K = R/m, and hence multipli-
cation by x is the zero map on Torf;e (M, k). Exactness shows that the map
Toer(M/xM, k) — Tor,lf (M, k) is an isomorphism. But pd(M) = n gives
TorX (M, k) # {0}, by Corollary 8.54. Hence, TorX (M /xM, k) # {0}, and
pd(M/xM)=n+1. e

Proposition 8.60. [f (R, m, k) is a regular local ring, then D(R) is finite; in
fact,
D(R) = V(R) = dim(R).

Proof.  Since R is regular, m can be generated by an R-sequence xi, ..., Xg,
by Proposition 8.58. But Lemma 8.59 applied to the modules R, R/(x1),
R/(x1,x2), -+, R/(x1,...,xq) = R/m = k shows that pd(k) = d. Hence,
d = V(R) = dim(R), by Proposition 8.58. On the other hand, Theorem 8.55
gives d = pd(k) = D(R). e

The converse of Proposition 8.60: a noetherian local ring of finite global
dimension is regular, is more difficult to prove. The following proof is essen-
tially that in Lam, Lectures on Modules and Rings, Chapter 2, § SF.

In proving that D(R) finite implies R regular, we cannot assume that R
is a domain (though this will turn out to be true); hence, we must deal with
zero-divisors.

Proposition 8.61. Let (R, m, k) be a local ring.

() If m — m? consists of zero-divisors, then there is a nonzero a € R with

am = {0}.
(ii) If0 < D(R) = n < o9, then there exists a nonzero-divisor x € m—m?.
Proof.
(i) By Proposition 8.51, there are prime ideals p1, ..., p, with

m—m? C Zer(R) S p; U---Up,.
If we can show that
mCpU---Upy, (D

then Prime Avoidance, Lemma 8.50, gives m C p; for some i. But
p; = ann(a) for some a € m, so that am = {0}, as desired.
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To verify Eq. (1), it suffices to prove m?> C p;U---U p,,. Now m % m?,
by Nakayama’s Lemma (we may assume that m # {0}, for the result is
trivially true otherwise), and so there exists x € m—m? C p;U---U p,.
Let y € m?. For every integer s > 1, we have x + y* e m — m? C
p1U---Up,; thatis, x +y* € p; for some j = j(s). By the pigeonhole
principle, there are an integer j and integers s < ¢ with x +y5, x +y' €
p;. Subtracting, y*(1 — y'7*) € p;. But I — y'~% is a unit [if u € m,
then 1 — u is a unit; otherwise, (1 — u) is a proper ideal, (1 —u) C m,
I —uem,and 1 € m]. Since p; is a prime ideal, y € p;.

(i1) (Griffith) In light of (i), it suffices to show there is no nonzero a € m
with am = {0}. If, on the contrary, such an a exists and if u: R — R is
given by p: r > ar, then m C ker u. This inclusion cannot be strict;
if b € ker u, then ab = 0, but if b ¢ m, then b is a unit (for Rb is not
contained in the maximal ideal), and so ab # 0. Hence, m = ker u.
Thus, k = R/m = R/kerpu = imu = Ra; that is, k = Ra. Consider
the exact sequence 0 - Ra — R — R/Ra — 0; by Exercise 8.4 on
page 466, either pd(R/Ra) = pd(Ra) +1 = pd(k) +1 or pd(R/Ra) =
0. In the first case, pd(R/Ra) = pd(k) + 1 > pd(k), contradicting
Theorem 8.55(ii) [which says that pd(k) = D(R)]. In the second case,
0 = pd(Ra) = pd(k), contradicting pd(k) = D(R) > 0. e

Theorem 8.62 (Serre—Auslander-Buchsbaum). A noetherian local ring
(R, m, k) is regular if and only if D(R) is finite; in fact,

D(R) = V(R) = dim(R).

Proof. Necessity is Proposition 8.60. We prove the converse by induction
on D(R) =n > 0. If n = 0, then R is semisimple. Since R is commutative,
it is the direct product of finitely many fields; since R is local, it is a field, and
hence it is regular.

If n > 1, then Proposition 8.61(ii) says that m — m? contains a nonzero-
divisor x. Now (R*, m*, k) is a local ring, where R* = R/(x) and m* =
m/(x). Since x is not a zero-divisor, it is regular on m; since pdp(m) < oo,
Proposition 8.38(i) gives pdg«(m/xm) < oo.

Consider a short exact sequence of R-modules

0>k—B—>C—0 ()
in which «(1) = e, where ¢ € B — mB. Now the coset ¢ + mB is part of a

basis of the k-vector space B/mB, and so there is a k-map f: B/mB — k

with 8(e +mB) = 1. The composite 7 : B nal B/mB i> k shows that the
exact sequence (2) splits, for o = 1;. In particular, this applies when B =
m/xm and k is the cyclic submodule generated by e + xm. Thus, k is a direct
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summand of m/xm. It follows that pdp«(k) < oo, so that Proposition 8.39
gives pdp« (k) = pdr (k) — 1. Theorem 8.55 now gives

D(R*) = pdge(k) =n — 1.

By induction, R* is a regular local ring and dim(R*) = n — 1. Hence, there
is a prime chain of length n — 1 in R*

Po2p1 229, = ()

[we have p:_ , = (0) because R* is a domain (being regular) and (0) is a
prime ideal]. Taking inverse images gives a prime chain in R:

Po2Pp1 2 2 Pn—1 = ().

Were (x) a minimal prime ideal, then every element in it would be nilpotent,
by Proposition 4.76. Since x is not a zero-divisor, it is not nilpotent, and so
there is a prime ideal q C (x). Hence, dim(R) > n.

Since x € m — m?, Proposition 8.56 says that V(R) = 1 4+ V(R*) =
1 4+ dim(R*) = n. Therefore,

n=V(R)>dmR) >n

[the inequality V(R) > dim(R) always being true], and dim(R) = V(R);
that is, R is a regular local ring of dimension n. e

Corollary 8.63. If S is a multiplicative subset of a regular local ring, then
S~IR is also a regular local ring. In particular, if p is a prime ideal in R,
then Ry is regular.

Proof.  Theorem 8.27(ii) says that D(R) = wD(R) in this case. But Propo-
sition 8.23 says that wD(S~'R) < wD(R). Therefore,

D(S™'R) = wD(S™'R) < wD(R) = D(R) < oo.

It follows from Corollary 4.74 that S~IR is a local ring; therefore, SR is
regular, by Theorem 8.62. The second statement follows: if S = R — p, then
Ry is a local ring, and so the Serre-Auslander—Buchsbaum Theorem says that
Ry isregular. e

There are several proofs that regular local rings are unique factorization
domains; most use the notion of depth that was used in the original proof of
Auslander and Buchsbaum. If M is a finitely generated R-module, then its
depth is defined by

depth(M) = length of a maximal regular M-sequence.

The depth of M was originally called its codimension because of the following
result of Auslander and Buchsbaum.
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Theorem (Codimension Theorem). Let (R, m) be a noetherian local
ring, and let M be a finitely generated R-module with pd(M) < oco. Then

pd(M) + depth(M) = depth(R).
In particular, if R is regular, then depth(R) = D(R) and
pd(M) + depth(M) = D(R).

Proof. Rotman, Advanced Modern Algebra, Proposition 11.181. e

M. Nagata proved, using the result of Serre—Auslander—Buchsbaum, that
if one knew that every regular local ring R with D(R) = 3 is a unique fac-
torization domain, then this is so for every regular local ring [see “A general
theory of algebraic geometry over Dedekind rings II,” Amer. J. Math. 80
(1958), 382-420].

Corollary 8.64. If (R, m) is a noetherian local ring with D(R) = 3 and
p # mis a prime ideal in R, then

pd(p) < 1.

Proof. By hypothesis, there exists x € m — p. Now x is regular on R/p: if
x(r +p) =p,thenxr € pandr € p, for x ¢ p and p is prime. Therefore,
depth(R/p) > 1 and so pd(R/p) < 2, by the Codimension Theorem. But
there is an exact sequence 0 — p — R — R/p — 0, which shows that

pd(p) <1. e

Theorem 8.65 (Auslander-Buchsbaum). Every regular local ring R is a
unique factorization domain.

Proof. A standard result of Commutative Algebra is that a domain R is a
unique factorization domain if every minimal nonzero prime ideal p (there
is no nonzero prime ideal q with ¢ C p) is principal. If D(R) = 3, then
Corollary 8.64 gives pd(p) < 1. Auslander and Buchsbaum showed that
pd(p) = 1 gives a contradiction, so that pd(p) = 0; that is, p is a projective,
hence free, R-module (Corollary 4.16). But any ideal in a domain R that is
free as an R-module must be principal. e

Another proof, not using Nagata’s difficult proof, is based on the follow-
ing criterion.

Proposition 8.66. If R is a noetherian domain for which every finitely gen-
erated R-module has FFR, then R is a unique factorization domain.
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Proof.  This is Theorem 184 in Kaplansky, Commutative Rings. The proof
uses a criterion for a domain to be a unique factorization domain (his Theo-
rem 179), which involves showing that if a commutative ring R has the prop-
erty that every finitely generated R-module has FFR, then so does R[x]. But
this is just our Theorem 8.47. e

Unique factorization for regular local rings follows easily from this last
proposition. If D(R) = n, then every finitely generated R-module M has
a projective resolution 0 —- P, — --- - Py — M — 0 in which each
P; is finitely generated (Lemma 7.19). But (finitely generated) projective R-
modules are free [Theorem 4.57], and so every finitely generated R-module
has FFR.



Homology and Groups

Applications of homology to Group Theory are usually called Cohomol-
ogy of Groups. The history of this subject is quite interesting. Its algebraic
origins can be found in the early 1900s, with Schur’s work on projective rep-
resentations [homomorphisms of groups to PGL(n, k)] in the first decade and
in Schreier’s work on extensions of groups in 1926. Its topological origins
lie in the discovery, by Hurewicz in the 1930s, that if X is a connected as-
pherical space (the higher homotopy groups of X are all trivial), then all the
homology and cohomology groups of X are determined by the fundamental
group m = m1(X). But it was a theorem of Hopf in 1944, about actions of
fundamental groups, that led Eilenberg and Mac Lane to define and develop
the basic ideas of Cohomology of Groups. This mixed parentage (which ex-
plains why groups in the early papers are always denoted by 7 instead of by
G) is areflection of a deep relationship between Group Theory and Algebraic
Topology.

9.1 Group Extensions

Exactness of a sequence of nonabelian groups,

dnt) d
— Gpyl — Gy — Gp_| —,

is defined just as it is for abelian groups: imd,y+; = kerd, for all n. Of
course, each ker d,, is a normal subgroup of G,.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 495
DOI 10.1007/978-0-387-68324-9_9, (© Springer Science+Business Media LLC 2009
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Definition. If K and Q are groups, then an extension of K by Q is a short

exact sequence 1 — K S EL 0 — 1

Unless we say otherwise, we will assume that the map i: K — E is the
inclusion. The notation K and Q reminds us of kernel and quotient. Hence-
forth, we shall denote the elements of K by a, b, c, . .. and the elements of O
by x,y,z,....

A group E having a normal subgroup K can be “factored” into K and
E /K. The extension problem is the inverse question: find all possible exten-
sions of a given ordered pair of groups (K, Q). In other words, to what extent
can E be recovered from a normal subgroup K and the quotient Q = E/K?
For example, we know that |E| = |K||Q| if E is finite. O. Schreier [“Uber
die Erweiterung von Gruppen, 1,” Monatsh. Math. Phys. 34 (1926), 165—
180; “Uber die Erweiterung von Gruppen, 1I,” Abh. Math. Sem. Hamburg
4 (1926), 321-346] solved the extension problem for groups by constructing
all possible multiplication tables for E. Even though the proof of Schreier’s
Theorem consists of manipulating and organizing long series of elementary
calculations, his results are still strong enough to yield a proof of the Schur—
Zassenhaus Lemma. Our discussion in this section displays the origins of
several definitions of Homological Algebra, but, more importantly, it gives
interpretations of low-dimensional cohomology groups.

Remark. We must point out that Schreier’s solution of the extension prob-
lem does not allow us, given K and Q, to determine the number of noniso-
morphic middle groups E of extensions 1 - K — E — Q — 1. Itis not
easy to recognize whether two multiplication tables of a group of order n arise
from a given group E; after all, there are n! different lists of the elements of
E, each of which gives a multiplication table. If E’ is another group of or-
der n, the problem of determining whether or not E and E’ are isomorphic
is essentially the problem of comparing two families of multiplication tables,
one for E and one for E’, to see if there is a pair of tables that coincide.

<

The significance of the extension problem arises from the Jordan—Holder
Theorem. Assume that a group E has a composition series; say,

E=Ko>Ki>Ky>--->K,_1 > K, ={l},

with simple factor groups Qji, ..., Q,, where Q; = K;_1/K; foralli > 1.
Since K,, = {1}, we have Q,, = K,,_1. If we could solve the extension prob-
lem, then K,,_» could be found from the extension 1 — K, | — K,_» —
Qn—1 — 1; thatis, from Q,, Q,—1. Iterating, E could be recaptured from
On, Qn-1,..., Q1. Since all finite simple groups are classified (the proof
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having been completed in 2005), all finite groups could be surveyed if we
could solve the extension problem.!

The definition of extension makes sense for any, possibly nonabelian,
group K, but, to keep hypotheses uniform, we assume in our discussion that
K is abelian, even when this assumption is not needed. As usual, we write
abelian groups K additively. The group E containing K is allowed to be
nonabelian, and it, too, is written additively (it would be confusing to do
otherwise). The group Q will always be written multiplicatively. Proposi-
tion 9.1(iii) gives a reason for using this mixture of additive and multiplicative
notation.

Definition. If0 > K — E > Q — 1 is an extension, then a lifting is
a function £: Q — E, not necessarily a homomorphism, with pf = 1. We
assume further that £(1) = 0.

If K is a subgroup of a group E, then a right transversal of K (or a
complete system of coset representatives of K) is a subset T € E consisting
of exactly one element from each right coset K + ¢ of K. We normalize T by
assuming that ¢ = 0 is chosen for the coset K.

Given a right transversal, we can construct a lifting. For each x € Q,
surjectivity of p provides £(x) € E with p£(x) = x; thus, the function x
£(x) is a lifting if we choose £(1) = 0. Conversely, given a lifting, we claim
that £(Q) is a right transversal of K. If K + e is a coset, then p(e) € Q; say,
p(e) = x; hence, p(e—£(x)) = 1,sothate—€(x) € K and K+e¢ = K+£(x).
Thus, every coset has a representative in £(Q). Finally, we must show that
£(Q) does not contain two elements in the same coset. If K+£(x) = K+£(y),
then there is @ € K with a + €(x) = £(y). Apply p to this equation; since
p(a) =1, we have x = y and so £(x) = £(y).

The automorphism group Aut(E) of a group E is the group whose ele-
ments are all the isomorphisms of E with itself and whose operation is compo-
sition. An automorphism ¢ is irner if it is a conjugation; that is, thereisc € £
with ¢(e) = ¢ + ¢ — c for all e € E (in additive notation). An automorphism
of E is outer if it is not inner. The subset Inn(E) € Aut(E) consisting of all
the inner automorphisms of E is a normal subgroup of Aut(E); the quotient
Aut(E)/Inn(E) is denoted by Out(E) and is called the outer automorphism

group.

I Alas, these remarks are not practical. Besche—Eick—O’Brien [“The groups of order
at most 2000,” Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1-4] have shown
that there are 56,092 nonisomorphic groups of order 28, and 10,494,213 groups of order
2°. Besche-Eick—O’Brien [“A millenium project: constructing small groups,” Internat.
J. Algellp(i;a Comput., 12 (2002), 623-644] show that there are 49,487,365,422 groups of
order 2°%.
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Proposition 9.1. Let0 - K — E 2 O — 1 be an extension of an abelian
group K by a group Q, and let £: Q — E be a lifting.

(1) Forevery x € Q, conjugation 0,: K — K, defined by
Or:ar— L(x)+a—L(x),
is independent of the choice of lifting £(x) of x.
(1) The function 0: Q — Aut(K), defined by x +> 0y, is a homomorphism.
(iii) K is a left ZQ-module with scalar multiplication given by

xa =0y(a) =L(x)+a—L(x).

Proof.

(i) Suppose that ¢’ is another lifting, so that p¢'(x) = x for all x € Q.
There is b € K with £/(x) = £(x)+b [for —€(x) +¢'(x) € ker p = K].
Therefore,

U(x)+a—€(x)=€(x)+b+a—b—L(x)
=L(x) +a—L(x),

because a@ and b commute in the abelian group K.

(i1)) Now 6y (a) € K, for K<E,sothatd,: K — K;also, 68, € Aut(K), be-
cause conjugations are automorphisms. Let us see that6: Q — Aut(K)
is a homomorphism. If x, y € Q and a € K, then

Ox(Oy(a)) = 0x(E(y) +a — £(y)) = £(x) + £(y) +a — £(y) — £(x),

while
Oxy(a) = L(xy) +a — £(xy).

But £(x) + £(y) and £(xy) are both liftings of xy, and so 0,60, = 6y,
follows from part (i).

(ii1) Parts (i) and (ii). e

The homomorphism 8: Q — Aut(K) in Proposition 9.1(ii) tells “how”
K isnormal in E. For example, let K be a cyclic group of order 3 and Q = (x)
be cyclic of order 2. If E = K x Q, then E is abelian and K lies in the center
Z(E). In this case, £(x) +a — €(x) = a foralla € K, and 8, = 1g. On the
other hand, if £ = S3 and K = A3 (which does not lie in the center of S3),
then conjugating (1 2 3) by £(x) = (1 2) gives (1 3 2); thus, 6 # 1.
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In Proposition 2.1, we saw that if R is a ring, then an abelian group K is a
left R-module if and only if there is a ring homomorphism ¢: R — End(K)
with ¢(r): a + ra for all a € K.2 In the special case R = ZQ, we note
that ¢: ZQ — End(K) is completely determined by its restriction 8: Q —
Aut(K) [because Aut(K) is the group of (two-sided) units in End(K)]. In
down-to-earth language, if we know xa for all x € Q and a € K, then
(Q_myx)a =), my(xa). Consequently, we use the following abbreviations.

Definition. If Q is a group and K is an abelian group, then a Q-module
is a left Z Q-module. We will abbreviate Homz o (A, B) to Homgp (A, B) and
M ®z0 Nto M ®p N when A, B, N are left ZQ-modules and M is a right
Z.Q-module.

Exercise 9.3 on page 503 shows that every left ZQ-module K is also a
right ZQ-module if one defines ax to be x " 'a, where x € Q and a € K.
Thus, if K and L are Q-modules, we can always adjust them so that K ® o L
is defined.

An abelian group K can be a Q-module in many ways. In particular, if
K happens to be a Q-module, then the Z Q-action arising from conjugation,
as in Proposition 9.1, may not be the same as the given Q action. We give a
name to those extensions for which these two Z Q actions coincide.

Definition. Let K be a O-module. An extension0) - K — E — Q — 1
realizes the operators if, for all x € Q and a € K, we have

xa=4£0(x)+a—L(x).
Definition. A Q-module K is trivial if xa = a forallx € Q andalla € K.

Proposition 9.2. Let K be a Q-module, and let0 — K — E — Q — 1

be an extension that realizes the operators. Then K is a trivial Q-module if
and only if K € Z(E).

Proof.  Since the extension realizes the operators, xa = £(x) + a — £(x) for
allx € Qanda € K. If K is a trivial Q-module, then xa = a, so that a
commutes with £(x) for all x. A general element of E has the form b + £(y),
where b € K andy € Q; hence,a+b+£4(y) =b+a+L4(y) =b+€(y)+a
(for K is abelian), and soa € Z(E).

Conversely, if a € Z(E), then it commutes, in particular, with every £(x),
andsoxa =f4(x)4+a—L(x)=a. e

ZExercise 9.12 on page 513 puts this into the context of adjoint functors.
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9.1.1 Semidirect Products

The simplest extension of K by Q is a semidirect product.

Definition. An extension 0 — K — E - O — 1 is split if there is a
homomorphism j: Q — E with pj = 1. The middle group E in a split
extension is called a semidirect product of K by Q and is denoted by K x Q.

Thus, an extension is split if and only if there is a lifting, namely, j, that
is also a homomorphism.

Proposition 9.3. The following conditions are equivalent for an additive
group E having a normal abelian subgroup K with E/K = Q.

(1) E is a semidirect product of K by Q.

(ii) There is a subgroup C < E (called a complement of K) with C = Q,
KNC={0},and K +C = E.

(iii)) Each e € E has a unique expression e = a + x, where a € K and
x eC.

Proof. A routine adaptation of Proposition 2.20. e

Example 9.4.

(1) An abelian group E is a semidirect product if and only if it is a di-
rect product (usually called a direct sum), for every subgroup of an
abelian group is normal. Thus, cyclic groups of prime power order are
not semidirect products, for they cannot be a direct sum of two proper
subgroups.

(i1) A direct product K x Q is a semidirect product of K by Q (and also
of Q by K). A semidirect product is so called because a direct product
E of K and C requires, in additionto K + C = E and K N C = {0},
that both subgroups K and Q be normal. For example, E = S5 is a
semidirect product of K = (¢) by Q = (t), where 0 = (1 2 3) and
7 = (1 2). Note that K is a normal subgroup of order 3, but that O, a
subgroup of order 2, is not normal. It follows that the nonabelian group
S3 is not the direct product K x Q, for this last group is abelian.

This example also shows that complements need not be unique. For
example, S3 is the semidirect product of K by (t’), where t’ is any
transposition in S3. However, any two complements in a semidirect
product E of K by Q are isomorphic, for every complement Q of K is
isomorphic to E/K.
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(iii) The dihedral group Dy of order 8 is a semidirect product in two ways:
Dg =14 x I and Dg = V x I, where V is the four-group. The other
nonabelian group of order 8, the quaternion group Q, is not a semidirect
product (see Exercise 9.7 on page 503). <«

We now construct semidirect products.
Theorem 9.5. Given a group Q and a Q-module K, there exists a split

extension 0 —- K — K x Q — Q — 1 that realizes the operators. The
elements of K x Q are all ordered pairs (a, x) € K x Q, and its operation is

(a,x)+ (b,y) = (a+ xb, xy).

Remark. The operation looks more natural in multiplicative notation;

(ax)(by) = a(xbxil)xy. <

Proof.  'We begin by proving that K x Q is a group. For associativity,

[(@, x) + (b, )]+ (c,2) = (a+xb,xy) + (¢, 2)
= (a+xb+ (xy)c, (xy)z2).
On the other hand,
(a,x)+[(b,y) + (c,2)] = (a,x) + (b+ yc, yz)
=(a+xb+yc), x(y2)).

Of course, (xy)z = x(yz), because of associativity in Q. The first coordinates
are also equal: since K is a Q-module,

x(b+ yc) =xb+ x(yc) = xb+ (xy)c,

and so the operation is associative. The identity element is (0, 1), for
0,1+ (a,x) =0+ la, 1x) = (a, x),

and the inverse of (a, x) is (—x~!a, x~1), for

la,x Y+ @x)=(xla+x"a,xx)=(0, 1).

(=x~
Therefore, K » Q is a group.
Define a function p: K x Q — Q by p: (a,x) — x. Since the only
“twist” occurs in the first coordinate, p is a surjective homomorphism with
kerp ={(a,1): a € K}. If wedefinei: K - KxQbyi:ar> (a,l),then

05> K5Kx0b 01
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is an extension. The function j: Q — K x Q, defined by j: x — (0, x), is
a homomorphism, for (0, x) 4+ (0, y) = (0, xy). Now pjx = p(0, x) = x, so
that pj = 1, and the extension splits. Finally, K x Q realizes the operators:
if x € Q, then every lifting of x has the form ¢(x) = (b, x) for some b € K,
and

(b,x)+(a, 1) — (b, x) = (b+xa,x)+ (—x"'b,x7
=b+xa+ x(—xilb), xxil)
=Mb+xa—>b,1)

=(xa,1). e

Theorem 9.6. Let K be an abelian group. If a group E is a semidirect
product of K by a group Q, then there is a Q-module structure on K so that
E=K x Q.

Proof. Regard E as a group having subgroups K and Q [so we may write x
instead of ¢(x)] with K <1 E and Q a complement of K. Ifa € K and x € Q,
define

xXa=x+a—x.

By Proposition 9.3(iii), each e € E has a unique expression as e = a + x,
where a € K and x € Q. It follows that p: E — K X Q, defined by
¢:a+x— (a,x),is abijection. We now show that ¢ is an isomorphism.

pla+x)+b+y)=9pla@a+x+b+(—x+x)+y)
=¢pla+x+b—x)+x+y)
=(a+xb,x +y).

The definition of addition in K x Q now gives

(d+Xb7x+)’) :(aax)+(b7y)
=pla+x)+eb+y). e

Exercises

In the first two exercises, the group K need not be abelian; in all other exer-
cises, it is assumed to be abelian.

*9.1 Let E be a group of order mn, where (m,n) = 1. Prove that a
normal subgroup K of order m has a complement in E if and only if
there exists a subgroup C C FE of order n. (Kernels in this exercise
may not be abelian groups.)



*9.2

*9.3

9.4

*9.5

*9.6

*9.7

9.8
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(Baer). Call a group E injective® in Groups if it solves the ob-
vious universal mapping problem: for every group G and every
(not necessarily abelian) subgroup S € G, every homomorphism
f: S — E can be extended to G:

E

‘\
IS
N

| —S——=0G.

Prove that E is injective if and only if £ = {1}.

Hint. Let A be free with basis {x, y}, and let B be the semidirect
product B = A x (z), where z is an element of order 2 that acts on
Abyzxz = yand zyz = x.

(i) Let K be a Q-module, where Q is a group. Prove that K
is also a right ZQ-module if one defines ax to be x~'a,
where x € Q anda € K.

(i) If a Q-module K is made into a right ZQ-module, as in
part (i), give an example showing that K isnota (ZQ, ZQ)-
bimodule.

Give an example of a split extension 0 - K — G LS QO — lin
Groups for which there does not exist a homomorphismg: G — K
with gi = 1g. Compare with Exercise 2.8.

Let0 - B — A — I, — 0 be an exact sequence of finite abelian
p-groups, where p is prime. If B is cyclic, prove that either A is
cyclic or the sequence splits.

fG=KxQand Q C N C G,provethat N = (NNK) x Q.
Hint. Adapt the proof of Corollary 2.24.

Prove that Q, the group of quaternions, is not a semidirect product.
Hint. The quaternion group Q is the subgroup of order 8,

Q=1{I,A, A%, A>, B, BA, BA%>, BA%}
= (A) U B(A) CGL(2,0),

where [ = [(1)(1)] A= [_01 (1)] and B = [?(’)] Note that A2 = —1
is the unique element of order 2 and that Z(Q) = (—1).

If K and Q are solvable groups, prove that a semidirect product of
K by Q is also solvable.

3The term injective had not yet been coined when R. Baer, who introduced the notion
of injective module, proved this result. After recognizing that injective groups are duals of
free groups, he jokingly called such groups fascist groups, and he was delighted to have
proved that they are trivial.
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9.9 Let K be an abelian group, let Q be a group, and let 8: Q —
Aut(K) be a homomorphism. Prove that K x Q = K x Q if and
only if 6 is the trivial map; that is, 6, = 1 forallx € Q.
*9.10 (i) If K is cyclic of prime order p, prove that Aut(K) is cyclic
of order p — 1.
(ii) Let G be a group of order pg, where p > ¢ are primes. If
q 1 (p — 1), prove that G is cyclic. Conclude, for example,
that every group of order 15 is cyclic.
*9.11 (i) Prove that Aut(S3) = GL(2,2) = Ss.
(ii) Prove that if G is a group, then Aut(G) = {1} if and only
if |G| < 2. Conclude that every abelian group of order > 2
has an outer automorphism.
(iii) Prove that Dg has an outer automorphism.
Hint. D3 = (a, b), where a* = 1 = b? and bab = a~ .
Define ¢: Dg — Dg by ¢(a) = a3 and ¢(b) = b.

(iv) Prove that Q has an outer automorphism.
Hint. Show that Aut(Q) = S4 and Inn(Q) = V.

9.1.2 General Extensions and Cohomology

We now solve the extension problem. In light of our discussion of semidi-
rect products, it is reasonable to refine the problem by assuming that K is a
Q-module and then to seek all those extensions E realizing the operators.
One way to describe a group E is to give an addition table for it; that is, to
list all its elements ay, az, ... and all sums a; + a;. Indeed, this is how we
constructed semidirect products: elements are the ordered pairs (a, x) with
a € K and x € Q, and addition is (a, x) + (b, y) = (a + xb, xy).

Suppose an extension) —- K — E — Q — lisgiven. If £: Q — E'is
a lifting (¢ need not be a homomorphism), then im ¢ is a transversal* of K in
E. The group E is the disjoint union of the cosets of K, so that every element
can be expressed uniquely as a + €x. If x, y € Q, then £(xy) and £x + Ly
represent the same coset of K, and so

Ix +€y = f(x,y)+ £(xy) forsome f(x,y) € K. (1)

Definition. Given an extension 0 - K — E — O — 1 and a lifting
¢: Q — E, afactor set> (or cocycle) is a function f: Q x Q — K such that,
forallx,y € Q,

€(x) +L(y) = f(x,y) + £(xy).

4Since K is a normal subgroup, each right coset Kx is equal to the left coset x K, and
so it makes no difference whether one chooses a right transversal or a left one.

5 If we switch to multiplicative notation, we see that a factor set occurs in the factoriza-
tion £(x)€(y) = f(x, »)L(xy).
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Of course, a factor set depends on the choice of lifting £. When E is a
split extension, there exists a lifting that is a homomorphism, and the cor-
responding factor set is identically 0. Therefore, we can regard a factor set
as the obstruction to a lifting £ being a homomorphism; that is, a factor set
describes how an extension differs from being a split extension.

Proposition 9.7. Let Q be a group, K a Q-module, and 0 - K — E —
QO — 1 an extension realizing the operators. If £: Q — E is a lifting and
f: O x Q — K is its corresponding factor set, then

@) forallx,y € Q,
Fdy)=0= f(x, 1)

(ii) the cocycle identity® holds: for all x, y, z € Q, we have

[y + fy,2) =xf(y,2) + fx, y2).

Proof. Set x = 1 in the equation that defines f(x, y),

Ex) 4+ £(y) = fx, y) + £(xy),

to see that £(y) = f(1,y) 4+ £(y) [since £(1) = O is part of the definition
of lifting], and hence f(1,y) = 0. Setting y = 1 gives the other equation
in (i).
The cocycle identity follows from associativity in E. For all x, y,z € Q,
we have
[LCx) + €]+ £(z) = fx,y) + Llxy) + £(2)

= f(x,y) + fxy, 2) + £(xyz).
On the other hand,
L(x) + [E(y) + ()] = £(x) + f(y,2) + £(y2)

=xf(y,z) +£(x) +£(y2)
=xf(y,2) + f(x,y2) + L(xyz). e

It is more interesting that the converse is true. The next result generalizes
the construction of K x Q in Proposition 9.5.

OWritten as an alternating sum, f(x,y) = xf(y, z) — f(xy, z2) + f (x, yz), this identity
is reminiscent of the formulas describing geometric cycles as described in Section 1.1.
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Theorem 9.8. Given a group Q and a Q-module K, then a function
f: 0 x Q — K is a factor set if and only if it satisfies the cocycle identity:
forallx,y,z € Q,
xf(y,2) = fxy,2) + f(x,y2) = f(x,y) =0,
and, forall x,y € Q,
fy)=0= f(x, 1.

More precisely, if f satisfies these two identities, then there is an extension
0 —- K - E — Q — 1 realizing the operators, and there is a lifting
: Q — E whose corresponding factor set is f.

Proof. Necessity is Proposition 9.7. For the converse, define E to be the set
of all ordered pairs (a, x) in K x Q equipped with the operation

(a,x) + (b, y) = (a+xb+ f(x,y),xy)
@if f is identically O, then E = K x Q). The proof that E is a group is
similar to the proof of Proposition 9.5. The cocycle identity is used to prove
associativity, the identity is (0, 1), and the inverse of (a, x) is

—(a,x) = (=x"la—x7"f oD,
Define p: E — Q by p: (a,x) — x. Because the only “twist” occurs in

the first coordinate, it is easy to see that p is a surjective homomorphism with
kerp ={(a,1):a € K}. If wedefinei: K — Ebyi:a+ (a,l),then we

have an extension 0 — K > E 5 0 — 1.

To see that this extension realizes the operators, we must show, for every
lifting ¢, that xa = £(x) +a — £(x) foralla € K and x € Q. Now {(x) =
(b, x) for some b € K and

L(x)+ (a,1) —L(x) = (b,x)+ (a, 1) — (b, x)
= (b +xa,x)+ (—x_lb — x_lf(x, x_l), x_l)
=(b+xa+x[—xb—x e, x4 FexTh, 1)
= (xa, 1).

Finally, we show that f is the factor set determined by some lifting £.
Define ¢(x) = (0,x) for all x € Q. The factor set F' determined by ¢ is
defined by

F(x,y) = £(x) + £(y) — £(xy)
= (0,x)+ (0, y) — (0, xy)
= (f(x, ), x9) + (=) ey, Gy, ey h
= (f(x,y) +xy[—Gy) 'y, ) H]
+ fey, Gy xyen™h
=(f(r.y). 1. e
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Definition. Given a group Q, a Q-module K, and a factor set f, denote the
group constructed in Theorem 9.8 by Gr(K, Q, f), and denote the extension
of K by Q constructed there by

XGr(K,Q,f)=0—- K —->Gr(K,Q,f)— Q0 — 1.

The next result shows that we have found all the extensions of a Q-module
K by a group Q.

Theorem 9.9. Let Q be a group, let K be a Q-module, and let 0 — K —
E — Q — 1 be an extension realizing the operators. Then there exists a
factor set f: QO x Q — K with

E = Gr(K, Q, f).

Proof. Let{: Q — E be alifting, and let f: QO x QO — K be the corre-
sponding factor set: that is, for all x, y € Q, we have

€x) 4+ £(y) = fx, y) + £(xy).

Since E is the disjoint union of the cosets, £ = Uer K + £¢(x),eache € E
has a unique expression ¢ = a + £(x) fora € K and x € Q. Uniqueness
implies that the function ¢: £ — Gr(K, Q, f), given by

p:e=a-+L(x)+— (a,x),
is a well-defined bijection. We now show that ¢ is an isomorphism.

pa+Llx)+b+L(y) =pla+Ll(x)+b—L(x)+L(x)+ L))
=@a+xb+L(x)+ L)
=g¢la+xb+ f(x,y)+lxy))
=(a+xb+ f(x,y),xy)
= (a,x)+ (b, y)
=ga+Lx)+e®+Ly). e

Remark. Note thatif a € K, then ¢(a) = ¢(a + £(1)) = (a, 1), and, if
x € Q, then ¢(€(x)) = (0, x). This would not be so had we chosen a lifting
£ with £(1) #0. <«

We have described all extensions in terms of factor sets, but a factor set
depends on a choice of lifting.



508 HoMoLOGY AND GROUPS CH.9

Lemma 9.10. Given a group Q, a Q-module K, an extension 0 — K —
E — Q — 1 realizing the operators, and liftings £ and £’ giving factor sets
f and f', respectively, there exists a function h: Q — K with h(1) = 0 and,
forallx,y € Q,

() = fx, p) = xh(y) — h(xy) + h(x).

Proof. For each x € Q, both £(x) and €' (x) lie in the same coset of K in E,
and so there exists an element i (x) € K with

(x) = h(x) + £(x).

Since £(1) = 0 = ¢/(1), we have h(1) = 0. The main formula is derived as
follows:

@) +€(y) = [h(x) + L] + [h() + £()]
= h(x) 4+ xh(y) + €(x) + £(y),
because E realizes the operators. The equations continue,
)+ €)= hx) + xh(y) + f(x, y) + ()
= h(x) +xh(y) + f(x, y) = h(xy) + €' (xy).

By definition, f’ satisfies €'(x) + €'(y) = f'(x, y) + £'(xy). Therefore,

f'0e, y) = h(x) + xh(y) + f(x, y) = h(xy),
and so

1o y) = fx,y) = xh(y) = h(xy) + h(x). o

Definition. Given a group Q and a Q-module K, afunctiong: O x Q — K
is called a coboundary if there exists a function 4: Q — K with h(1) = 0
such that, forall x, y € Q,

g(x,y) =xh(y) — h(xy) + h(x).

The term coboundary arises because its formula is an alternating sum
analogous to the formula for geometric boundaries in Chapter 1.

We have just shown that if f and f” are factor sets of an extension G that
arise from different liftings, then f’ — f is a coboundary.

Definition. Given a group Q and a Q-module K, define
ZZ(Q, K) = {all factor sets f: QO x Q — K}

and
B?(0, K) = {all coboundaries g: 0x Q0 — K}.



9.1 GRoupr EXTENSIONS 509

Proposition 9.11.  Given a group Q and a Q-module K, then Z*(Q, K) is
an abelian group with operation pointwise addition,

FHry e fay)+ oy,
and B*(Q, K) is a subgroup of Z*(Q, K).

Proof. Pointwise addition is an (associative) operation on 72, for Theo-
rem 9.8 implies that the sum of two factor sets is a factor set. Now the zero
function, f(x, y) = 0forall x, y € Q, is a factor set (of the semidirect prod-
uct), and — f set is a factor set if f is (using Theorem 9.8 again), so that Z?2
is a group.

Note that B> C Z2, forif g(x, y) = xh(y)—h(xy)+h(x), then g(1, y) =
0 = g(x, 1) [this uses the hypothesis that #(1) = 0] and g satisfies the co-
cycle identity (a routine calculation); moreover, B2 is nonempty, for the zero
function is a coboundary. To see that B? is a subgroup of Z2, it now suffices
to prove it is closed under subtraction. But if g, g’ are coboundaries, then they
are factor sets (because B2 C Z2), and so g—4g € B2, by Lemma 9.10. e

The following quotient group suggests itself.

Definition. The second cohomology group is defined by

H*(0,K) = Z*(0,K)/B*(Q, K).

Definition. Given a group Q and a Q-module K, two extensions of K by Q
realizing the operators are called equivalent if there are factor sets f and f’
of each so that /' — f is a coboundary.

The notion of equivalence of extensions of modules that arose in Chap-
ter 6 first arose in the context of group extensions.

Proposition 9.12. Given a group Q and a Q-module K, two extensions of
K by Q realizing the operators are equivalent if and only if there exists an
isomorphism y . E — E’ making the following diagram commute:

0 K—=£g-"-0 |
|
IK\L Iy llQ
\
0 K—>FE —=0 1.
i p

Remark. A diagram chase shows that any homomorphism y making the
diagram commute is necessarily an isomorphism. <«
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Proof.  Assume that the two extensions are equivalent. We begin by setting
up notation. Let £: Q — E and £': Q — E’ be liftings, and let f, f’ be the
corresponding factor sets; that is, for all x, y € Q, we have

Ex) 4+ £(y) = fx, y) + £(xy),

with a similar equation for f” and £’. Equivalence means that there is a func-
tionh: Q — K with 2(1) = 0 and

fx,y) = f/(x, y) = xh(y) — h(xy) + h(x)

forallx,y € Q. Since E = Uer K + €(x) is a disjoint union, each e € E
has a unique expression ¢ = a 4 £(x) fora € K and x € Q; similarly, each
¢’ € E' has a unique expression ¢ = a + £/ (x).

Define y: E — E’ by

y(a+L0(x)) =a+h(x)+ ' (x).
This function makes the diagram commute. If ¢ € K, then
y(@ =y@a+Lt) =a+h1)+ 1) =a;
furthermore,
plya+L0(x)) =p'a+hx)+€(x)=x=pla+Lx).
Finally, y is a homomorphism:
y(la+ L)+ b+ €()]) =y(a+xb+ f(x,y) + £(xy))
=a+xb+ f(x,y) +h(xy) + €' (xy),
while
y@+e@)+yb+L(y) =(a+hx)+€@)+ (b+h) + Q)
=a+h(x)+xb+xh(y)+ f(x,y)+ € (xy)
=a+xb+ (h(x)+xh(y) + f'(x,y) + € (xy)
=a+xb+ f(x,y)+h(xy) + € (xy).

We have used the given equation for f' — f [remember that the terms other
than ¢'(xy) all lie in the abelian group K, and so they may be rearranged].
Therefore, the diagram commutes.

Conversely, assume that there exists a homomorphism y making the dia-
gram commute; thus, y(a) = a for alla € K and

x = p) = pyx)

for all x € Q. It follows that y¢: Q — E’is a lifting. Applying y to the
equation £(x)+£(y) = f(x, y)+£€(xy), which defines the factor set f, we see
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that y f is the factor set determined by the lifting y£. But y f (x, y) = f(x, y)
for all x, y € Q, because f(x,y) € K. Therefore, f is also a factor set of
the second extension. On the other hand, if f’ is any other factor set for the
second extension, then Lemma 9.10 shows that ' — f € BZ; that is, the
extensions are equivalent. e

Remark. We have seen, in Example 7.26, that there can be two inequivalent
extensions of K by Q with isomorphic middle groups. Since both extensions
in that example have abelian middle groups, each K is a trivial Q-module,
and so both extensions realize the operators. <«

The next theorem summarizes the calculations in this section.

Theorem 9.13 (Schreier). Let Q be a group, let K be a Q-module, and let
e(Q, K) denote the family of all the equivalence classes of extensions of K
by Q realizing the operators. There is a bijection

¢: H*(Q,K) — e(Q, K)

that takes O to the class of the split extension.

Proof. Denote the equivalence class of an extension
0>K—-FE—Q0—1
by [E]. Define ¢: H>(Q, K) — e(Q, K) by
¢: [+ B’ [XGr(K, 0, /)],

where f is a factor set of the extension and the target extension is that con-
structed in Theorem 9.8.

First, ¢ is a well-defined injection: f and g are factor sets with f 4+ B2
=g+ B? if and only if [XGr(K, Q, f)] = [XGr(K, Q, g)], by Proposi-
tion 9.12. To see that ¢ is a surjection, let [E] € e(Q, K). By Theorem 9.9
and the remark following it, [E] = [XGr(K, Q, f)] for some factor set f,
and so [E] = @(f + B?). Finally, the zero factor set corresponds to the
semidirect product. e

Corollary 9.14. If Q is a group, K is a Q-module, and H*(Q, K) = {0},
then every extension of K by Q realizing the operators splits. Thus, if 0 —
K — E — Q — 1 is an extension realizing the operators, then E = K x Q.

Proof. By the theorem, e(Q, K) = im¢ = {[¢(0)]}; that is, every extension
of K by Q realizing the operators is equivalent to the split extension. In this
case, the middle group E of an extension is a semidirect product K x Q. e
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Remark. Schreier’s approach to extensions can be modified to give another
construction of Ext}e (C, A) for any ring R. Given an extension 0 — A —
B — C — 0 of left R-modules, choose a lifting £: C — B with £0 = 0.
Each element of B has a unique expression of the form a + fc, and, when we
try to add two elements, a factor set emerges:

(@+Lc)+ (@ +ecy=a+a + fe,c)+t(c+ ). )

Here, f: C x C — A satisfies the identities
(i) f(c,00=0= f(0,c",

i) f(c, "= fc+c, N+ flc,d +c")— f(c, ) =0,

(iii) f(c,c) = f(c,0).
The second and third identities arise, respectively, from associativity and com-
mutativity of addition. If we define addition on B = A x C by Eq. (1),
then B is an abelian group because [ satisfies (i), (ii), (iii). To ensure that
B is a left R-module, we return to the left R-module B. Define a function

g: RxC — Abyg(r, c) =rlc—£(rc). Additional identities arise from the
module axioms:

@ g, ¢0) =0=g(r,0);

(ii) rg(s, c) = g(rs, c) — g(r, s0);
(i) g(r +s,¢) + f(re,sc) = g(r, ) + g(s, 0);
(iv) g(r,c+ ')+ f(re,rc’)y = g(r,c) + g(r, ¢).

The ordered pair (f, g) conveys all the necessary data to make B into a left
R-module if one defines scalar multiplication by

r(a+L€c) =ra—+ £(rc)

(remember that A and C are left R-modules). The set of all such (f, g)
forms an abelian group Z(C, A), where each coordinate acts via pointwise
addition, and choosing a second lifting ¢': C — A determines a subgroup
B(C, A) C Z(C, A). Obviously, the resolution and the boundary formula are
more complicated than those for groups, but they are simple for Z-modules
when g can be forgotten. <«
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Exercises

*9.12

*9.13

9.14

9.15

9.16

9.17

Let U: Rings — Groups be the functor assigning to each ring R
its group of (two-sided) units U (R); let F': Groups — Rings be
the functor assigning to each group G its integral group ring ZG and
to each group homomorphism ¢: G — H the ring homomorphism
F(p): ZG — 7ZH, defined by ), smyx = Y . _;mp(x).
Prove that (F, U) is an adjoint pair of functors.
Let O be a group and let K be a Q-module. Prove that any two split
extensions of K by Q realizing the operators are equivalent.
Let Q be abelian, let K be a Q-module, and let A(Q, K) be the
subset of H%(Q, K) consisting of all [0 - K — E — Q — 1]
with E abelian.

(i) Prove that A(Q, K) is a subgroup of H?(0, K).

(i) Prove that A(Q, K) = Ext},(Q, K).
The generalized quaternion group Q,,, for n > 3, is the subgroup
of GL(2, C) generated by A = [g ‘(‘))] and B = [_01 (1)] where w is
a primitive 2"~ !th root of unity. Note that |Q,,| = 2" and that

2n—2

A" — 1, BAB'=4"' and B’ =A

(i) Prove that B is the unique element of order 2, Z(Q,) =
(B), and that Q,, is not a semidirect product.

(ii) Prove that Q,, is a central extension (i.e., 0 is trivial) of I,
by D2n—l .
(iii) Using factor sets, give a proof of the existence of Q,,.

If p is an odd prime, prove that every group G of order 2p is a
semidirect product of I, by I, and conclude that either G is cyclic
or G = Dyp.
(i) Let T be the subgroup of GL(2, C) generated by [i‘)’ a?z]
and [ 7], where » = e2mi/f3
unity. Prove that |T'| = 12.
(ii) Prove that T has a presentation

(a,b|a®=1,b"=0a> = (ab)?.

is a primitive cube root of

(iii) Prove that T = I3 x 4.
Hint. Let K = (u) = I3, let 0 = (x) = I4, and make K
into a Q-module by xu = 2u, x(2u) = u, and x2u =u.In
K x Q, define a = (2u, x2) and b = (0, x).

(iv) Prove that every group G of order 12 is isomorphic to ex-
actly one of the following five groups:

L2, VxI3, A4, S3xD, T.



514 HoMoLOGY AND GROUPS CH.9

9.1.3 Stabilizing Automorphisms

The Schur—Zassenhaus Lemma, Theorem 9.43, gives a condition guarantee-
ing that H 2(0,K) = {0}: if Q and K are finite groups whose orders are
relatively prime. In this case, the middle group E of an extension is a semidi-
rect product. If C, C" are complements of K in E, then C = C’ (for both are
isomorphic to £/K = Q). The Schur—Zassenhaus Lemma goes on to say that
C and C’ are conjugate subgroups. Let us examine conjugacy.

We begin with a computational lemma. Let Q be a group, let K be a
Q-module, and let 0 - K — E — (O — 1 be a split extension. Choose a
lifting £: Q — E, so that every element e € E has a unique expression of the
form

e=a+ Ix,

wherea € K and x € Q.

Definition. An automorphism ¢ of a group E stabilizes an extension

0> K ——>E-2 Q — 1 if the following diagram commutes:

0 K—=£g-Ls0 1
A b e
0 K—E—>0 1

The set of all stabilizing automorphisms of an extension of K by Q, where K
is a Q-module, is a group under composition; it is denoted by

Stab(Q, K).

We shall see, in Corollary 9.17, that Stab(Q, K) does not depend on the
extension.

Proposition 9.15. Let Q be a group, let K be a Q-module, and let

0—>K—>E—p>Q—>1

be an extension. If £: Q — FE is a lifting, then every stabilizing automorphism
¢: E — E has the form

pla+4€x)=a+d(x)+ Lx,

where d(x) € K is independent of the choice of lifting €. Moreover, this
Sformula defines a stabilizing automorphism if and only if, for all x,y € Q,
the functiond: Q — K satisfies

d(xy) = d(x) + xd(y).
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Proof. If ¢ is stabilizing, then ¢(a) = a, foralla € K, and pp = p. To
use the second constraint on ¢, suppose that ¢ (¢x) = d(x) + £y for some
d(x) e Kandy € Q. Then

x = px) = pp(lx) = p(d(x) +Ly) = y;
that is, x = y. Therefore,
pla+€x) =¢a)+elx)=a+d(x) + £x.

To see that the formula for d holds, we first show that d is independent
of the choice of lifting. Suppose that £': Q9 — G is another lifting, so that
o(l'x) = d'(x) + £'x for some d'(x) € K. Now there is k(x) € K with
U'x = k(x) + £x, for pt/x = x = plx. Therefore,

d(x)=¢W'x)—€x
= @(k(x) +€x) — £'x
=k(x)+d(x)+tx —€x
=d(x),
because k(x) + €x — ¢'x = 0.
There is a factor set f: Q — K withx +{y = f(x, y)+£(xy) for each

x,y € Q. We compute ¢ (£x + £y) in two ways.
On the one hand,

pUx +Ly) = o(f(x,y) + £(xy))
=o(f(x,y) + l(xy)
= f(x,y) + @l(xy) for f(x,y) e K
= f(x,y) +d(xy) + L(xy).
On the other hand,
p(x +Ly) = p(x) + @ (Ly)

=dx)+Lx+d(y)+ Ly
=d(x) +xd(y) + f(x, y) + £(xy).

After canceling ¢(xy) from the right, all terms lie in the abelian group K; now
cancel f(x, y) from both sides to obtain

d(xy) =d(x) + xd(y).

The proof of the converse: if p(a+£x) = a+d(x)+€x (where d satisfies
the given identity), then ¢ is a stabilizing isomorphism, is left to the reader.
[ ]

We give a name to functions like d.
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Definition. Let Q be a group and let K be a Q-module. A derivation (or
crossed homomorphism) is a function d: Q — K such that

d(xy) = xd(y) +d(x).

The set of all derivations, Der(Q, K), is an abelian group under pointwise
addition. If K is a trivial Q-module, then Der(Q, K) = Hom(Q, K).

If d is a derivation, then d(1) = 0, ford(1 - 1) = 1d(1) + d(1).

Proposition 9.15 can be restated. If 0 - K — E — Q — 1isan
extension with lifting £: G — E, then £(x) = (d(x), x), whered: Q — K,
and ¢ is a homomorphism if and only if d is a derivation.

Recall that Stab(Q, K) denotes the group of all the stabilizing automor-
phisms of an extension of K by Q.

Corollary 9.16. Let Q be a group, K a Q-module, and 0 - K — E —
Q — 1 an extension. The function o : ¢ +— d, where p(€x) = d(x) + {x, is
an isomorphism

o: Stab(Q, K) — Der(Q, K).

Proof. If ¢ is a stabilizing automorphism and £: Q — E is a lifting, then
Proposition 9.15 says that ¢(a +€x) = a+d(x)+£x, where d is a derivation.
This proposition further states that d is independent of the choice of lifting;
that is, o is a well-defined function Stab(Q, K) — Der(Q, K). The reader
can easily check that o is a homomorphism.

We now show that o is an isomorphism. If d € Der(Q, K), define
¢: E — Ebyg(a+€x) =a+d(x)+ £x. Now g is stabilizing, by Propo-
sition 9.15, and d — ¢ isinversetoo. e

It is not obvious from its definition that Stab(Q, K) is abelian, for its
operation is composition.

Corollary 9.17. If Q is a group and K is a Q-module, then Stab(Q, K) is
an abelian group that does not depend on the extension of K by Q used to
define it.

Proof. By Corollary 9.16, Stab(Q, K) = Der(Q, K); hence, Stab(Q, K)
is abelian because Der(Q, K) is. Moreover, Der(Q, K) is defined without
referring to any extension of K by Q. e
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Example 9.18. If Q is a group and K is a Q-module, then a function
do: Q — K of the form dy(x) = xap — ag, where ag € K, is a derivation:
do(x) + xdo(y) = xap — ao + x(yao — aop)
= xap — ap + xyap — xaop
= xyap — do
= dp(xy).
If the action of Q on K is conjugation, say, xa = £x + a — {x, then

xag — ag = €x + ag — €x — aop;

that is, xag — ag is the commutator of x and a¢ (in multiplicative notation,
xagp — ap becomes xaox_lao_l ). <«

Definition. A derivation dy: QO — K of the form dy(x) = xag — ag, where
ap € K, is called a principal derivation. The set of all principal derivations is
denoted by

PDer(Q, K).

PDer(Q, K) is a subgroup of Der(Q, K), because (xa — a) — (xb — b) =
x(a —b) — (a —Db).

Lemma 9.19. Let0 - K — E — Q — 1 be an extension, and let
£: Q — E be a lifting.

(i) A function ¢: E — E is an inner stabilizing automorphism by some
ao € K if and only if

gla+£€x) =a+ xap —ap + £x.
(ii) Stab(Q, K)/Inn(Q, K) = Der(Q, K)/PDer(Q, K),
where Inn(Q, K) = Inn(E) N Stab(Q, K).
Proof.

(1) If we write d(x) = xag — ag, then ¢(a + €x) = a + d(x) + £x. But
d is a (principal) derivation, and so ¢ is a stabilizing automorphism, by
Proposition 9.15. Finally, ¢ is conjugation by —ay, for

—ag+ (a+£€x)+ag=—ap+a+ xay+ €x = p(a + €x).

Conversely, assume that ¢ is a stabilizing conjugation. That ¢ is sta-
bilizing says that p(a + ¢x) = a + d(x) + £x; that ¢ is conjuga-
tion by ap € K says that ¢(a + ¢x) = ag + a + £x — ag. But
ap+a—+4€x —ag =ao+a— xap + £x, so that d(x) = ag — xaop.
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(i) We prove that o (Inn(Q, K)) = PDer(Q, K), where o : Stab(Q, K) —
Der(Q, K) is the isomorphism of Corollary 9.16: if ¢ € Stab(Q, K),
then p(a +€x) = a+dx)+L€xando: ¢ — d. If ¢ € Inn(Q, K),
then ¢(a + €x) = a + xag — ag + £x, by part (i), so that o (¢) = d with
d(x) = xag — ao; hence, o(p) € PDer(Q, K) and o (Inn(Q, K)) C
PDer(Q, K). For the reverse inclusion, if dy € PDer(Q, K), define
wo: E — Ebygola+ €x) =a+dy(x)+ €x. Now ¢y € Inn(Q, K),
by part (i), and so dy = o (¢p). e

Definition. If Q is a group and K is a Q-module, define

H'(0, K) = Der(Q, K)/PDer(Q, K).

Corollary 9.20. For every group Q and Q-module K,

H'(Q, K) = Stab(Q, K)/Inn(Q, K).
Proof. Immediate from the definition of H (0, K) and Lemma 9.19(iii). e
Proposition 9.21. Let0 — K — E — Q — 1 be a split extension, and let

C and C' be complements of K in E. If H(Q, K) = {0}, then C and C’ are
conjugate.

Proof. Since E is a semidirect product, there are liftings £: Q — E, with
image C, and ¢': Q — E, with image C’, that are homomorphisms. Thus,
the factor sets f and f’ determined by each of these liftings are identically
zero, and so f’ — f = 0. But Lemma 9.10 says that there exists 1: Q — K,
namely, i1(x) = £'x — £x, with

0= f'(x,y) = f(x,y) = xh(y) — h(xy) + h(x);

thus, /4 is a derivation. Since H'(Q, K) = {0}, h is a principal derivation:
there is ag € K with

O'x —€x = h(x) = xap — agp
for all x € Q. Since addition in E satisfies £’x — ag = —xag + £'x, we have
Lx =ay— xag +'x = ag + £'x — ag.

Butim¢ = C and im ¢’ = C’, and so C and C’ are conjugate via ag. e



9.2 GRoup CoHOMOLOGY 519

9.2 Group Cohomology

If A and B are left R-modules, for some ring R, then the abelian group
Hompg (A, B) is usually not an R-module unless A or B is a bimodule (see
Proposition 2.54). Similarly, if A is a right R-module and B is a left R-
module, then A ®r B is only an abelian group (see Proposition 2.51). How-
ever, module structures are available when R = ZG.

Definition. Let G be a group, and let A and B be left ZG-modules. The
diagonal action on Homg (A, B) is given by
(g9)(@) = gp(g~'a),

where g € G,p: A — B,anda € A.
If M is aright ZG-module and B is a left ZG-module, the diagonal action
on M ®¢ B is given by

gm ®b) =gm Q gb,

where g € G,m € M, and b € B. Note that if M is G-trivial, then diagonal
actionis g(m @ b) = m ® gb.

Exercise 9.18 on page 557 asks you to prove that diagonal action makes
Homg (A, B) and M ®¢ B into G-modules.

Consider the formulas that have arisen in the Section 9.1.
factor set: 0 =xf(y,z) — f(xy,2) + f(x,yz2) — f(x,y)
coboundary: f(x,y) = xh(y) — h(xy) + h(x)
derivation: 0 = xd(y) — d(xy) +d(x)
principal derivation: d(x) = xap — ao

A pattern suggests that the next equation is
0 = xag — ap.
Definition. If G is a group (we now denote groups by G instead of by Q)
and K is a G-module, then the submodule of fixed points is defined by
K®={a €K :xa=aforalx e G).

It is easy to see that K G is a G-trivial submodule; indeed, it is the unique
maximal G-trivial submodule of K. If 9: K — Lisa G-mapanda € K©,
then xa = a for all x € G, and so ¢(xa) = ¢(a). Since ¢ is a G-map,
@(xa) = x¢(a), and so ¢(a) € LY. Define ¢ = ¢|KC.
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Definition. The fixed-point functor Fix®: ;6Mod — 7GMod is defined
by Fix%(K) = K¢ and Fix%(¢p) = ¢¢ = ¢|K©°.

It is easy to see that Fix¢ is an additive functor.

Proposition 9.22. [f7Z is viewed as a G-trivial module, then
Fix¢ = Homg (Z, 0),
and, hence, Fix© is left exact.

Proof. Define tx: Homg(Z, K) — K% by f — f(1). Now f(1) € LG:
if x € G,thenxf(1) = f(x-1) = f(1), because Z is G-trivial. To see that
Tk is an isomorphism, we display its inverse. If @ € K©, there is a Z-map
fa: Z — K with f;(1) = a. Since xa = a for all x € G, it follows that f is
a G-map, and a — f; is the inverse of 7g. The reader may check naturality:
the following diagram commutes.

Homg (Z, K) —> kG

y e

Homg (Z, L) —— L6 o

Definition. If G is a group and K is a G-module, then the cohomology
groups of G with coefficients in K are

H"(G,K) = Ext%G(Z, K),
where Z is viewed as a trivial G-module.

Having defined group cohomology H" (G, K) as the right derived func-
tors of Fix® & Homy (Z, (), we are now obliged to show that these groups
coincide with Schreier’s groups whenn = 1 and n = 2.

As Ext(Z, 1) is computed with a G-projective resolution of Z, let us be-
gin by mapping ZG onto Z.

Proposition 9.23. There is a G-exact sequence
0—G— 2G> 17—0,

where € : .G — 7 is defined by ) ..o mxx = ) . . my. The function € is
a ring map as well as a G-map, and ker € = G is a two-sided ideal in 7.G.

Proof. 'We can calculate directly that € is a G-map, but let us be fancy and
use the functor F: Groups — Rings (in Exercise 9.12 on page 513) assign-
ing to each group G its integral group ring ZG. The trivial group homomor-
phism ¢: G — {1} induces a ring map F¢: ZG — Z{1} = Z, namely,
Fo =¢€: Y myx > Y m,. Since € is a ring homomorphism, G = kere is a
two-sided ideal in ZG. e



9.2 GRoup CoHOMOLOGY 521

The map €: ZG — Z is important because of the special role played by
the G-trivial module Z.

Definition. The map €: ZG — Z, given by Y myx +> Y my, is called the
augmentation, and G = Ker ¢ is called the augmentation ideal.

Lemma 9.24. The additive group of the augmentation ideal G is the free
abelian group with basis {x — 1 : x € G*}, where G* ={x € G : x # 1}.

Proof. Ifu =73  ..;mxx € ZG,thenu € kere ifandonlyif ) , ., m, = 0.
Therefore, u = u — (erc mx)l =Y .cgx mx(x —1). Thus, G is additively
generated by all x — 1. Suppose that ), _;x m,(x — 1) = 0. Then we have
> e Mxx — (X cgx my)1 = 0. But, as an abelian group, ZG is free with
basis {x € G}. Hence,my =0forallx € G*. e

The next result shows that the hybrid Der(G, A) (G is a group and A is a
G-module) may be viewed as an ordinary Hom between G-modules.

Proposition 9.25. There is a natural isomorphism
7: Homg (G, ) — Der(G, O);

the maps t4: Homg(G, A) — Der(G, A) are given by t4(f) = [/, where
f'iG— Aisgivenbyx — f(x —1)forallx € G.

Proof. 1Tt is routine to check that if f: G — A is a G-map, then f’ is a
derivation and that t4 is a homomorphism.

We construct the inverse of 74. If d € Der(G, A), define d: g — A,
where d (x = 1) = d(x) (Lemma 9.24 shows that d is a well